[Paper note] LSTM: A Search Space Odyssey

本文探讨了LSTM及其多种变体在网络训练中的表现,并通过实验证明了去除输入门和遗忘门对模型效果的影响。此外,还研究了不同超参数设置对模型性能的影响,发现学习率是最关键的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LSTM overview

  • This is an awfully great explanation of the idea behind LSTM and its variations.

Experiment

  • Vanilla LSTM
    • vanilla LSTM
    • formulation of vanilla LSTM
  • Tested modifications:
    1. No Input Gate (NIG)
    2. No Forget Gate (NFG)
    3. No Output Gate (NOG)
    4. No Input Activation Function (NIAF)
    5. No Output Activation Function (NOAF)
    6. No Peepholes (NP)
    7. Coupled Input and Forget Gate (CIFG)
    8. Full Gate Recurrence (FGR)
  • Hyperparameter Search
    • number of LSTM blocks per hidden layer: log-uniform
      samples from [20, 200];
    • learning rate: log-uniform samples from [10−6, 10−2];
    • momentum: 1 − log-uniform samples from [0.01, 1.0];
    • standard deviation of Gaussian input noise: uniform samples from [0, 1].
  • Tested datasets
    • TIMIT Speech corpus (speech recognition)
    • IAM Online Handwriting Database (OCR)
    • JSB Chorales (music modeling)
  • Conclusions
    • Vanilla LSTM is good. Combine input/forget gate and remove peephole connections are worth trying.
    • Do not remove output gate or forget gate.
    • Learning rate is the most important parameter. Momentum is unimportant for LSTM. Gaussian noise on input may hurt.
    • Hyperparameters can be tuned independently.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值