[Paper note] FlowNet: Learning Optical Flow with Convolutional Networks

提出FlowNet,首个使用训练好的卷积神经网络进行光学流估算的方法。引入相关层计算两帧之间的相似性,并通过上采样细化网络输出。实验在多个数据集上验证,包括Middlebury、KITTI、Sintel及自动生成的FlyingChairs数据集。结果显示,FlowNet虽然精度略低于传统算法,但速度明显更快。

Highlight

  • First paper to use trained CNN for optical flow estimation
  • Introduce novel correlation layer
  • Refine network by upsampling

Model

  • model
  • FlowNetSimple: concatenate two consecutive images.
  • FlowNetCorr: use correlation layer
  • Correlation layer
    • Calculated between two feature maps
    • c(x1,x2)=o[k,k]×[k,k]<f1(x1+o),f2(x2+o)>
    • See model picture for an illustration
  • Refinement
    • refine
    • Concatenate the upsampled flow prediction and conv feature map

Experiment

  • Datasets:
    • Middlebury
    • KITTI
    • Sintel
    • Flying Chairs (proposed, auto generated)
  • Loss function: endpoint error – Euclidean distance between the predicted flow vector and GT.
  • Conclusion
    • FlowNet performs a little worse than other OF algorithm, but obviously faster.
    • Network trained on Flying Chairs (auto generated) data has good generalization ability on natural scenes.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值