Highlight
- First paper to use trained CNN for optical flow estimation
- Introduce novel correlation layer
- Refine network by upsampling
Model
- FlowNetSimple: concatenate two consecutive images.
- FlowNetCorr: use correlation layer
- Correlation layer
- Calculated between two feature maps
- c(x1,x2)=∑o∈[−k,k]×[−k,k]<f1(x1+o),f2(x2+o)>
- See model picture for an illustration
- Refinement
- Concatenate the upsampled flow prediction and conv feature map
Experiment
- Datasets:
- Middlebury
- KITTI
- Sintel
- Flying Chairs (proposed, auto generated)
- Loss function: endpoint error – Euclidean distance between the predicted flow vector and GT.
- Conclusion
- FlowNet performs a little worse than other OF algorithm, but obviously faster.
- Network trained on Flying Chairs (auto generated) data has good generalization ability on natural scenes.
提出FlowNet,首个使用训练好的卷积神经网络进行光学流估算的方法。引入相关层计算两帧之间的相似性,并通过上采样细化网络输出。实验在多个数据集上验证,包括Middlebury、KITTI、Sintel及自动生成的FlyingChairs数据集。结果显示,FlowNet虽然精度略低于传统算法,但速度明显更快。
1265

被折叠的 条评论
为什么被折叠?



