Codeforces 659E New Reform 【DFS 求环】

本文解析了 Codeforces 659E 题目“New Reform”,介绍了如何通过寻找连通分量中的环来最小化孤立顶点的数量,并提供了 AC 代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:Codeforces 659E New Reform

E. New Reform
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.

The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).

In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.

Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.

Input
The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000).

Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi (1 ≤ xi, yi ≤ n, xi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.

It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.

Output
Print a single integer — the minimum number of separated cities after the reform.

Examples
input
4 3
2 1
1 3
4 3
output
1
input
5 5
2 1
1 3
2 3
2 5
4 3
output
0
input
6 5
1 2
2 3
4 5
4 6
5 6
output
1
Note
In the first sample the following road orientation is allowed: , , .

The second sample: , , , , .

The third sample: , , , , .

题意:给你n个点和m条边,要求你随便给边定向,问最后至少有多少个点入度为0。

思路:首先一个成环的路径,我们总是可以将入度为0的点的个数变为0的。那么求环就可以了。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#define PI acos(-1.0)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define fi first
#define se second
#define ll o<<1
#define rr o<<1|1
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int MAXN = 1e5 + 10;
const int pN = 1e6;// <= 10^7
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
void add(LL &x, LL y) { x += y; x %= MOD; }
vector<int> G[MAXN];
bool vis[MAXN], flag;
void DFS(int u, int root, int fa) {
    //cout << u << endl;
    if(vis[u]) {
        flag = true;
        return ;
    }
    vis[u] = true;
    for(int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if(v == fa) continue;
        DFS(v, root, u);
    }
}
int main()
{
    int n, m; scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++) {
        vis[i] = false;
        G[i].clear();
    }
    for(int i = 0; i < m; i++) {
        int u, v; scanf("%d%d", &u, &v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    int ans = 0;
    for(int i = 1; i <= n; i++) {
        if(vis[i]) continue;
        flag = false; DFS(i, i, -1);
        ans += flag == false;
    }
    printf("%d\n", ans);
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值