Stability
Time Limit: 3000/2000 MS (Java/Others) Memory Limit: 65535/102400 K (Java/Others)
Total Submission(s): 1184 Accepted Submission(s): 259
Problem Description
Given an undirected connected graph G with n nodes
and m edges,
with possibly repeated edges and/or loops. The stability of connectedness between node u and
node v is
defined by the number of edges in this graph which determines the connectedness between them (once we delete this edge, node u and v would
be disconnected).
You need to maintain the graph G, support the deletions of edges (though we guarantee the graph would always be connected), and answer the query of stability for two given nodes.
You need to maintain the graph G, support the deletions of edges (though we guarantee the graph would always be connected), and answer the query of stability for two given nodes.
Input
There are multiple test cases(no more than 3 cases),
and the first line contains an integer t,
meaning the totally number of test cases.
For each test case, the first line contains three integers n, m and q, where 1≤n≤3×104,1≤m≤105 and 1≤q≤105. The nodes in graph G are labelled from 1 to n.
Each of the following m lines contains two integers u and v describing an undirected edge between node u and node v.
Following q lines - each line describes an operation or a query in the formats:
⋅ 1 a b: delete one edge between a and b. We guarantee the existence of such edge.
⋅ 2 a b: query the stability between a and b.
For each test case, the first line contains three integers n, m and q, where 1≤n≤3×104,1≤m≤105 and 1≤q≤105. The nodes in graph G are labelled from 1 to n.
Each of the following m lines contains two integers u and v describing an undirected edge between node u and node v.
Following q lines - each line describes an operation or a query in the formats:
⋅ 1 a b: delete one edge between a and b. We guarantee the existence of such edge.
⋅ 2 a b: query the stability between a and b.
Output
For each test case, you should print first the identifier of the test case.
Then for each query, print one line containing the stability between corresponding pair of nodes.
Then for each query, print one line containing the stability between corresponding pair of nodes.
Sample Input
1 10 12 14 1 2 1 3 2 4 2 5 3 6 4 7 4 8 5 8 6 10 7 9 8 9 8 10 2 7 9 2 7 10 2 10 6 2 10 5 1 10 6 2 10 1 2 10 6 2 3 10 1 8 5 2 5 10 2 4 5 1 7 9 2 7 9 2 10 5
Sample Output
Case #1: 0 0 0 0 2 4 3 3 2 3 4
用LCA倍增也可以搞的,貌似还快一些。
思路:离线,逆序做。首先用并查集建立一棵树,树边权值为1,对于多余的边x y,更新x-y路径上的树边,即边权修改为0(存在环割边不存在)。然后逆序操作,把删边看做加边,每加一条边修改树边权值,至于查询x y就是计算x-y路径上的边权和。
AC代码:卡C++,G++可以过。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (300000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while((a)--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
#pragma comment(linker, "/STACK:102400000,102400000")
#define fi first
#define se second
using namespace std;
struct Tree{
int l, r, sum, lazy, len;
};
Tree tree[MAXN<<2];
void PushUp(int o){
tree[o].sum = tree[ll].sum + tree[rr].sum;
}
void PushDown(int o)
{
if(tree[o].lazy != -1)
{
tree[ll].lazy = tree[rr].lazy = tree[o].lazy;
tree[ll].sum = tree[ll].len * tree[o].lazy;
tree[rr].sum = tree[rr].len * tree[o].lazy;
tree[o].lazy = -1;
}
}
void Build(int o, int l, int r)
{
tree[o].l = l; tree[o].r = r;
tree[o].sum = tree[o].len = r - l + 1; tree[o].lazy = -1;
if(l == r)
return ;
int mid = (l + r) >> 1;
Build(lson); Build(rson);
}
void Update(int o, int L, int R, int v)
{
if(tree[o].l == L && tree[o].r == R)
{
tree[o].sum = v * tree[o].len;
tree[o].lazy = v;
return ;
}
PushDown(o);
int mid = (tree[o].l + tree[o].r) >> 1;
if(R <= mid) Update(ll, L, R, v);
else if(L > mid) Update(rr, L, R, v);
else {Update(ll, L, mid, v); Update(rr, mid+1, R, v);}
PushUp(o);
}
int Query(int o, int L, int R)
{
if(tree[o].l == L && tree[o].r == R)
return tree[o].sum;
PushDown(o);
int mid = (tree[o].l + tree[o].r) >> 1;
if(R <= mid) return Query(ll, L, R);
else if(L > mid) return Query(rr, L, R);
else return Query(ll, L, mid) + Query(rr, mid+1, R);
}
struct Edge{
int from, to, next;
};
Edge edge[MAXN<<1];
int head[MAXN], edgenum;
void init(){
edgenum = 0; CLR(head, -1);
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
int son[MAXN], num[MAXN];
int top[MAXN], pos[MAXN], id;
int dep[MAXN], pre[MAXN];
void DFS1(int u, int fa, int d)
{
dep[u] = d; pre[u] = fa; num[u] = 1; son[u] = -1;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v == fa) continue;
DFS1(v, u, d+1);
num[u] += num[v];
if(son[u] == -1 || num[son[u]] < num[v])
son[u] = v;
}
}
void DFS2(int u, int T)
{
top[u] = T; pos[u] = ++id;
if(son[u] == -1) return ;
DFS2(son[u], T);
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v == pre[u] || v == son[u]) continue;
DFS2(v, v);
}
}
int GetSum(int u, int v)
{
int f1 = top[u], f2 = top[v];
int ans = 0;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(u, v);
swap(f1, f2);
}
ans += Query(1, pos[f1], pos[u]);
u = pre[f1], f1 = top[u];
}
if(u == v) return ans;
if(dep[u] > dep[v]) swap(u, v);
return ans += Query(1, pos[son[u]], pos[v]);
}
void Change(int u, int v)
{
int f1 = top[u], f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(u, v);
swap(f1, f2);
}
Update(1, pos[f1], pos[u], 0);
u = pre[f1], f1 = top[u];
}
if(u == v) return ;
if(dep[u] > dep[v]) swap(u, v);
Update(1, pos[son[u]], pos[v], 0);
}
int father[MAXN];
int Find(int p){
int t, child = p;
while(p != father[p]) p = father[p];
while(child != p) {t = father[p]; father[child] = p; child = t;}
return p;
}
typedef pair<int, int> pi;
int op[MAXN], x[MAXN], y[MAXN];
multiset<pi> Map, NewMap;
multiset<pi> :: iterator it;
int ans[MAXN];
int main()
{
int t, kcase = 1; Ri(t);
W(t)
{
int n, m, q; Ri(n); Ri(m); Ri(q);
init(); Map.clear(); NewMap.clear();
for(int i = 1; i <= m; i++)
{
int u, v;
Ri(u); Ri(v);
if(u > v) swap(u, v);
Map.insert(pi(u, v));
}
for(int i = 0; i < q; i++)
{
Ri(op[i]); Ri(x[i]); Ri(y[i]);
if(x[i] > y[i]) swap(x[i], y[i]);
if(op[i] == 1) Map.erase(Map.find(pi(x[i], y[i])));
}
init(); for(int i = 1; i <= n; i++) father[i] = i;
for(it = Map.begin(); it != Map.end(); it++)
{
int u = Find(it->fi), v = Find(it->se);
if(u == v) continue;
addEdge(it->fi, it->se);
addEdge(it->se, it->fi);
father[u] = v; NewMap.insert(*it);
}
DFS1(1, -1, 1); id = 0; DFS2(1, 1); Build(1, 1, id);
for(it = Map.begin(); it != Map.end(); it++)
{
if(NewMap.find(*it) == NewMap.end())
Change(it->fi, it->se);
}
printf("Case #%d:\n", kcase++);
for(int i = q-1; i >= 0; i--)
{
if(op[i] == 1) Change(x[i], y[i]);
else ans[i] = GetSum(x[i], y[i]);
}
for(int i = 0; i < q; i++) if(op[i] == 2) Pi(ans[i]);
}
return 0;
}