Codeforces 615B Longtail Hedgehog 【dp】

圣诞礼物中的一款魔法图画,玩家需在给定的点和无向边构成的图中找到最美观的刺猬绘制方案,通过寻找特定链来最大化刺猬的美观值。

B. Longtail Hedgehog
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

This Christmas Santa gave Masha a magic picture and a pencil. The picture consists of n points connected by m segments (they might cross in any way, that doesn't matter). No two segments connect the same pair of points, and no segment connects the point to itself. Masha wants to color some segments in order paint a hedgehog. In Mashas mind every hedgehog consists of a tail and some spines. She wants to paint the tail that satisfies the following conditions:

  1. Only segments already presented on the picture can be painted;
  2. The tail should be continuous, i.e. consists of some sequence of points, such that every two neighbouring points are connected by a colored segment;
  3. The numbers of points from the beginning of the tail to the end should strictly increase.

Masha defines the length of the tail as the number of points in it. Also, she wants to paint some spines. To do so, Masha will paint all the segments, such that one of their ends is the endpoint of the tail. Masha defines the beauty of a hedgehog as the length of the tail multiplied by the number of spines. Masha wants to color the most beautiful hedgehog. Help her calculate what result she may hope to get.

Note that according to Masha's definition of a hedgehog, one segment may simultaneously serve as a spine and a part of the tail (she is a little girl after all). Take a look at the picture for further clarifications.

Input

First line of the input contains two integers n and m(2 ≤ n ≤ 100 0001 ≤ m ≤ 200 000) — the number of points and the number segments on the picture respectively.

Then follow m lines, each containing two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the numbers of points connected by corresponding segment. It's guaranteed that no two segments connect the same pair of points.

Output

Print the maximum possible value of the hedgehog's beauty.

Sample test(s)
input
8 6
4 5
3 5
2 5
1 2
2 8
6 7
output
9
input
4 6
1 2
1 3
1 4
2 3
2 4
3 4
output
12
Note

The picture below corresponds to the first sample. Segments that form the hedgehog are painted red. The tail consists of a sequence of points with numbers 12 and 5. The following segments are spines: (25), (35) and (45). Therefore, the beauty of the hedgehog is equal to 3·3 = 9.



题意:给定n个点m条无向边的图,设一条节点递增的链末尾节点为u,链上点的个数为P,则该链的beauty值 = P*degree[u]。问你所有链中最大的beauty值。


思路:定义dp[i]是以i节点为末尾的最长链上面节点数目。

把边sort下,dp[i] = max(dp[j]+1) j->i && j < i。最后维护(dp[i]+1) * degree[i]就好了。



AC代码:


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (200000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 10007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
struct Edge{
    int u, v;
};
Edge edge[MAXM];
bool cmp(Edge a, Edge b)
{
    if(a.u != b.u)
        return a.u < b.u;
    else
        return a.v < b.v;
}
int degree[MAXN], dp[MAXN];
int main()
{
    int n, m;
    Ri(n); Ri(m);
    CLR(degree, 0); CLR(dp, 0);
    for(int i = 0; i < m; i++)
    {
        Ri(edge[i].u); Ri(edge[i].v);
        if(edge[i].u > edge[i].v)
            swap(edge[i].u, edge[i].v);
        degree[edge[i].u]++; degree[edge[i].v]++;
    }
    sort(edge, edge+m, cmp);
    for(int i = 0; i < m; i++)
        dp[edge[i].v] = max(dp[edge[i].v], dp[edge[i].u] + 1);
    LL ans = 0;
    for(int i = 1; i <= n; i++)
        ans = max(ans, 1LL * degree[i] * (dp[i]+1));
    Pl(ans);
    return 0;
}


区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值