hdoj 2119 Matrix 【行列匹配 求解最小点覆盖】【基础题】

本文介绍了一道关于矩阵操作的问题,通过使用匈牙利算法来解决如何以最少的操作次数消除矩阵中所有1的问题。文章提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Matrix

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2234    Accepted Submission(s): 992


Problem Description
Give you a matrix(only contains 0 or 1),every time you can select a row or a column and delete all the '1' in this row or this column .

Your task is to give out the minimum times of deleting all the '1' in the matrix.
 

Input
There are several test cases.

The first line contains two integers n,m(1<=n,m<=100), n is the number of rows of the given matrix and m is the number of columns of the given matrix.
The next n lines describe the matrix:each line contains m integer, which may be either ‘1’ or ‘0’.

n=0 indicate the end of input.
 

Output
For each of the test cases, in the order given in the input, print one line containing the minimum times of deleting all the '1' in the matrix.
 

Sample Input
3 3 0 0 0 1 0 1 0 1 0 0
 

Sample Output
2
 



题意:给你一个N*M的矩阵,矩阵里面有一些位置是1。每次操作可以划去同一行或者同一列的1,问你最少需要几次操作。


水题吧,最小点覆盖 = 最大匹配。直接一次匈牙利就ok了。


AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 101
using namespace std;
int Map[MAXN][MAXN];
int pipei[MAXN];
bool used[MAXN];
int N, M;
void getMap()
{
    int a;
    memset(Map, 0, sizeof(Map));
    for(int i = 1; i <= N; i++)
    {
        for(int j = 1; j <= M; j++)
        {
            scanf("%d", &a);
            if(a)
                Map[i][j] = 1;//建立关系
        }
    }
}
int DFS(int x)
{
    for(int i = 1; i <= M; i++)
    {
        if(Map[x][i] && !used[i])
        {
            used[i] = true;
            if(pipei[i] == -1 || DFS(pipei[i]))
            {
                pipei[i] = x;
                return 1;
            }
        }
    }
    return 0;
}
void solve()
{
    int ans = 0;
    memset(pipei, -1, sizeof(pipei));
    for(int i = 1; i <= N; i++)
    {
        memset(used, false, sizeof(used));
        ans += DFS(i);
    }
    printf("%d\n", ans);
}
int main()
{
    while(scanf("%d", &N), N)
    {
        scanf("%d", &M);
        getMap();
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值