hdoj 1795 The least one 【简单题】

本文探讨了一个RPG游戏中英雄选择最优策略的问题,即如何选择与怪物等级互质且最小的英雄来最大化战斗效率。通过输入怪物等级Q,程序输出能够击杀至少Q个怪物的最小英雄等级,实现战斗的最小伤害。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The least one

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 418    Accepted Submission(s): 147


Problem Description
  In the RPG game “go back ice age”(I decide to develop the game after my undergraduate education), all heros have their own respected value, and the skill of killing monsters is defined as the following rule: one hero can kill the monstrers whose respected values are smaller then himself and the two respected values has none common factor but 1, so the skill is the same as the number of the monsters he can kill. Now each kind of value of the monsters come. And your hero have to kill at least M ones. To minimize the damage of the battle, you should dispatch a hero with minimal respected value. Which hero will you dispatch ? There are Q battles, in each battle, for i from 1 to Q, and your hero should kill Mi ones at least. You have all kind of heros with different respected values, and the values(heros’ and monsters’) are positive.
 

Input
  The first line has one integer Q, then Q lines follow. In the Q lines there is an integer Mi, 0<Q<=1000000, 0<Mi<=10000.
 

Output
  For each case, there are Q results, in each result, you should output the value of the hero you will dispatch to complete the task.
 

Sample Input
2 3 7
 

Sample Output
5 11
 

题意:求大于Q的且与Q互质的最小的数。


AC代码:

#include <cstdio>
#include <cstring>
#include <cmath>
bool judge(int x)
{
    for(int i = 2; i <= sqrt(x); i++)
        if(x % i == 0) return false;
    return true;
}
int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        int Q;
        scanf("%d", &Q);
        for(int i = Q + 1; ; i++)
        {
            if(judge(i))
            {
                printf("%d\n", i);
                break;
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值