poj 3905 Perfect Election 【2-sat 简单建图】

本文介绍了一种通过图论中的Tarjan算法解决复杂选举限制问题的方法。针对N个候选人的选举,通过M个条件限制,构建图并使用Tarjan算法求强连通分量来判断是否存在满足所有条件的选举结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Perfect Election
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 964 Accepted: 431

Description

In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.

Input

Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows: 

Accepted answers to the poll questionEncoding
I would be happy if at least one from i and j is elected.+i +j
I would be happy if at least one from i and j is not elected.-i -j
I would be happy if i is elected or j is not elected or both events happen.+i -j
I would be happy if i is not elected or j is elected or both events happen.-i +j


The input data are separated by white spaces, terminate with an end of file, and are correct.

Output

For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.

Sample Input

3 3  +1 +2  -1 +2  -1 -3 
2 3  -1 +2  -1 -2  +1 -2 
2 4  -1 +2  -1 -2  +1 -2  +1 +2 
2 8  +1 +2  +2 +1  +1 -2  +1 -2  -2 +1  -1 +1  -2 -2  +1 -1

Sample Output

1
1
0
1

Hint

For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.


题意:有N个候选人,给出M个限制条件。这些条件可以分成4类

1,+i +j 表示 i 和 j 至少选一个;

2,-i  -j 表示 i 和 j 最多选一个;

3,+i -j 表示 选i 和 不选j 最少成立一个 ;

4,-i +j 表示 不选i 和 选j 最少成立一个;      

问你有没有一种方案满足M个条件。


建图: 我用Ai表示i 被选上,!Ai表示i没有被选上。

对于1则有  !Ai -> Aj 和 !Ai -> Aj

对于2则有  Ai -> !Aj 和 Aj -> !Ai

对于3则有  Aj -> Ai 和 !Ai -> !Aj

对于4则有  !Aj -> !Ai 和 Ai -> Aj


建好图后 就是tarjan求SCC,然后判断是否矛盾即可。


AC代码:


#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 2000+10
#define INF 1000000
#define eps 1e-5
using namespace std;
vector<int> G[MAXN];
int low[MAXN], dfn[MAXN];
int dfs_clock;
int sccno[MAXN], scc_cnt;
stack<int> S;
bool Instack[MAXN];
int N, M;
void init()
{
	for(int i = 1; i <= 2*N; i++) G[i].clear();
}
void getMap()
{
	int i, j;
	char op1, op2;
	while(M--)
	{ 
		scanf("  %c%d %c%d", &op1, &i, &op2, &j);
		if(op1 == '+' && op2 == '+')
		{
			G[i + N].push_back(j);
			G[j + N].push_back(i);
		} 
		else if(op1 == '-' && op2 == '-')
		{
			G[i].push_back(j + N);
			G[j].push_back(i + N);
		}
		else if(op1 == '+' && op2 == '-')
		{
			G[i + N].push_back(j + N);//i若没有被选上 j一定没有被选上 
			G[j].push_back(i);//j被选上 i一定被选上 
		}
		else
		{
			G[i].push_back(j);//i被选上 j一定被选上 
			G[j + N].push_back(i + N);//j没有被选上 i一定没有被选上
		}
	}
}
void tarjan(int u, int fa)
{
	int v;
	low[u] = dfn[u] = ++dfs_clock;
	S.push(u);
	Instack[u] = true;
	for(int i = 0; i < G[u].size(); i++)
	{
		v = G[u][i];
		if(!dfn[v])
		{
			tarjan(v, u);
			low[u] = min(low[u], low[v]);
		}
		else if(Instack[v])
		low[u] = min(low[u], dfn[v]);
	}
	if(low[u] == dfn[u])
	{
		scc_cnt++;
		for(;;)
		{
			v = S.top(); S.pop();
			sccno[v] = scc_cnt;
			Instack[v] = false;
			if(v == u) break;
		}
	}
}
void find_cut(int l, int r)
{
	memset(low, 0, sizeof(low));
	memset(dfn, 0, sizeof(dfn));
	memset(sccno, 0, sizeof(sccno));
	memset(Instack, false, sizeof(Instack));
	dfs_clock = scc_cnt = 0;
	for(int i = l; i <= r; i++)
	if(!dfn[i]) tarjan(i, -1);
}
void solve()
{
	for(int i = 1; i <= N; i++)
	{
		if(sccno[i] == sccno[i+N])
		{
			printf("0\n");
			return ;
		}
	}
	printf("1\n");
}
int main()
{
	while(scanf("%d%d", &N, &M) != EOF)
	{
		init();
		getMap();
		find_cut(1, 2*N);
		solve();
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值