1021 Deepest Root (25)

本文介绍了一种通过两次深度优先搜索(DFS)算法确定给定图中最深根节点的方法,并提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1021 Deepest Root (25)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes’ numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print “Error: K components” where K is the number of connected components in the graph.

Sample Input 1:

5
1 2
1 3
1 4
2 5
Sample Output 1:

3
4
5
Sample Input 2:

5
1 3
1 4
2 5
3 4
Sample Output 2:

Error: 2 components

解题思路:
图的dfs,计算连通分量个数。
先做一次dfs,如果图连通,即dfs次数,若不为1,输出Error: x components,若为1,从第一次dfs得到的最深节点开始,再次dfs,两次得到的节点集合(并集)就是所求最深节点。
这题自己难以想到的是两次dfs得到最深节点。

#include<cstdio>
#include<set>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=1e5+10;
int n,deepest=0;
vector<int>adj[maxn],temp;
bool vis[maxn]={false};
set<int>s;

void dfs(int v,int deep){
    vis[v]=true;
    if(deep>deepest){
        deepest=deep;
        temp.clear();
        temp.push_back(v) ;
    }else if(deep==deepest){
        temp.push_back(v)  ;
    }
    for(int i=0;i<adj[v].size() ;i++){
        if(vis[adj[v][i]]==false)
            dfs(adj[v][i],deep+1);
    }
}
int main(){
    int a,b,cnt=0;
    scanf("%d",&n);
    for(int i=0;i<n-1;i++){
        scanf("%d%d",&a,&b);
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    fill(vis,vis+maxn,false);
    for(int i=1;i<=n;i++){
        if(vis[i]==false){
            dfs(i,1);
            cnt++;
        }
    }
    if(cnt!=1){
        printf("Error: %d components",cnt);
    }else{
        int s1=temp[0];
        for(int i=0;i<temp.size() ;i++)
            s.insert(temp[i]) ;
        temp.clear() ;
        deepest=0;
        fill(vis,vis+maxn,false);
        dfs(s1,1);
        for(int i=0;i<temp.size() ;i++) 
            s.insert(temp[i]) ;
        for(set<int>::iterator it=s.begin() ;it!=s.end() ;it++){
            printf("%d\n",*it);
        }
    }
    return 0;
} 
# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值