1021 Deepest Root 25

 

 

#include <cstdio>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 10010;
int n,maxDepth=0,vis[maxn];
vector<int> G[maxn],ans,temp;

void dfs(int idx){
    vis[idx] = 1;
    for(int i = 0; i < G[idx].size(); i++){
        if(vis[G[idx][i]] == 0){
            dfs(G[idx][i]);
        }
    }
}
void TDFS(int root, int depth, int pre){
    vis[root] = 1;
    if(depth > maxDepth){
        maxDepth = depth;
        temp.clear();
        temp.push_back(root);
    }else if(depth == maxDepth){
        temp.push_back(root);
    }
    for(int i = 0; i < G[root].size(); i++){
        if(G[root][i] != pre){
        // if(vis[G[root][i]] == 0){
            TDFS(G[root][i], depth+1, root);
        }
    }
}

int main() {
    scanf("%d", &n);
    //n=1
    if(n == 1){
        printf("%d\n", 1);
        return 0;
    }
    int from,to;
    for(int i = 0; i < n-1; i++){
        scanf("%d%d", &from, &to);
        G[from].push_back(to);
        G[to].push_back(from);
    }
    //判断是否是一个连通图
    int block = 0;
    fill(vis, vis+maxn, 0);
    for(int i = 1; i <= n; i++){
        if(vis[i] == 0){
            dfs(i);
            block++;
        }
    }
    if(block != 1){
        printf("Error: %d components\n", block);
        return 0;
    }
    TDFS(1,1,-1);
    ans = temp;
    TDFS(ans[0],1,-1);
    for(int i = 0; i < temp.size(); i++){
        ans.push_back(temp[i]);
    }
    sort(ans.begin(), ans.end());
    printf("%d\n", ans[0]);
    for(int i = 1; i < ans.size(); i++){
        if(ans[i] != ans[i-1]){
            printf("%d\n", ans[i]);
        }
    }
    return 0;
}

# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
### 补全BinaryTree类的方法 以下是基于提供的参考资料[^1][^2],补全 `BinaryTree` 类中缺失的代码实现: #### 方法说明 - **insertRight**: 将新节点插入作为当前节点的右子节点。如果已有右子节点,则将其降级为新节点的右子节点。 - **getRightChild**: 返回当前节点的右子树。 - **setRootVal**: 设置当前节点的值。 - **getRootVal**: 获取当前节点的值。 #### 完整代码实现 ```python class BinaryTree: def __init__(self, root_val): self.key = root_val self.left_child = None self.right_child = None def insert_left(self, new_node): if not isinstance(new_node, BinaryTree): # 确保传入的是BinaryTree对象 new_node = BinaryTree(new_node) if self.left_child is None: self.left_child = new_node else: t = BinaryTree(new_node.get_root_val()) t.left_child = self.left_child self.left_child = t def insert_right(self, new_node): if not isinstance(new_node, BinaryTree): # 确保传入的是BinaryTree对象 new_node = BinaryTree(new_node) if self.right_child is None: self.right_child = new_node else: t = BinaryTree(new_node.get_root_val()) # 创建新的右子节点 t.right_child = self.right_child # 原有的右子树成为新节点的右子树 self.right_child = t # 新节点替换原有右子节点位置 def get_left_child(self): return self.left_child def get_right_child(self): return self.right_child # 返回当前节点的右子树 def set_root_val(self, value): self.key = value # 更新当前节点的值 def get_root_val(self): return self.key # 返回当前节点的值 ``` --- ### 使用示例 以下是一个简单的测试案例,展示如何使用上述方法构建并操作二叉树: ```python # 初始化根节点 tree = BinaryTree('A') # 插入左子节点 tree.insert_left(BinaryTree('B')) # 插入右子节点 tree.insert_right(BinaryTree('C')) # 修改根节点的值 tree.set_root_val('Z') # 输出根节点的值 print(tree.get_root_val()) # 输出 'Z' # 访问右子节点 right_child = tree.get_right_child() if right_child: print(right_child.get_root_val()) # 输出 'C' else: print("No Right Child") # 继续向右子节点添加子节点 right_child.insert_right(BinaryTree('D')) deepest_right = right_child.get_right_child() if deepest_right: print(deepest_right.get_root_val()) # 输出 'D' else: print("No Deeper Right Child") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值