UNet:UNet的实时性能优化与部署_2024-07-24_09-56-20.Tex

UNet:UNet的实时性能优化与部署

UNet简介与原理

UNet架构详解

UNet是一种广泛应用于图像分割任务的卷积神经网络架构,由Olaf Ronneberger等人在2015年提出。其设计灵感来源于编码器-解码器结构,特别适合于医学图像的分割,因为它能够有效地处理图像中的细节信息,同时保持较高的分辨率。

编码器部分

编码器部分通常基于预训练的卷积神经网络,如VGG16或ResNet,用于提取图像的特征。它由一系列的卷积层和池化层组成,每一层的输出都会被传递到下一层,同时也会被保存下来用于解码器部分的特征融合。

# 编码器示例代码
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow
解释这个文件。_target_: diffusion_policy.workspace.train_diffusion_unet_hybrid_workspace.TrainDiffusionUnetHybridWorkspace checkpoint: save_last_ckpt: true save_last_snapshot: false topk: format_str: epoch={epoch:04d}-test_mean_score={test_mean_score:.3f}.ckpt k: 5 mode: max monitor_key: test_mean_score dataloader: batch_size: 64 num_workers: 8 persistent_workers: false pin_memory: true shuffle: true dataset_obs_steps: 2 ema: _target_: diffusion_policy.model.diffusion.ema_model.EMAModel inv_gamma: 1.0 max_value: 0.9999 min_value: 0.0 power: 0.75 update_after_step: 0 exp_name: default horizon: 16 keypoint_visible_rate: 1.0 logging: group: null id: null mode: online name: 2023.01.16-20.20.06_train_diffusion_unet_hybrid_pusht_image project: diffusion_policy_debug resume: true tags: - train_diffusion_unet_hybrid - pusht_image - default multi_run: run_dir: data/outputs/2023.01.16/20.20.06_train_diffusion_unet_hybrid_pusht_image wandb_name_base: 2023.01.16-20.20.06_train_diffusion_unet_hybrid_pusht_image n_action_steps: 8 n_latency_steps: 0 n_obs_steps: 2 name: train_diffusion_unet_hybrid obs_as_global_cond: true optimizer: _target_: torch.optim.AdamW betas: - 0.95 - 0.999 eps: 1.0e-08 lr: 0.0001 weight_decay: 1.0e-06 past_action_visible: false policy: _target_: diffusion_policy.policy.diffusion_unet_hybrid_image_policy.DiffusionUnetHybridImagePolicy cond_predict_scale: true crop_shape: - 84 - 84 diffusion_step_embed_dim: 128 down_dims: - 512 - 1024 - 2048 eval_fixed_crop: true horizon: 16 kernel_size: 5 n_action_steps: 8 n_groups: 8 n_obs_steps: 2 noise_scheduler: _target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler beta_end: 0.02 beta_schedule: squaredcos_cap_v2 beta_start: 0.0001 clip_sample: true num_train_timesteps: 100 prediction_type: epsilon variance_type: fixed_small num_inference_steps: 100 obs_as_global_cond: true obs_encoder_group_norm: true shape_meta: action: shape: - 2 obs: agent_pos: shape: - 2 type: low_dim image: shape: - 3 - 96 - 96 type: rgb shape_meta: action: shape: - 2 obs: agent_pos: shape: - 2 type: low_dim image: shape: - 3 - 96 - 96 type: rgb task: dataset: _target_: diffusion_policy.dataset.pusht_image_dataset.PushTImageDataset horizon: 16 max_train_episodes: 90 pad_after: 7 pad_before: 1 seed: 42 val_ratio: 0.02 zarr_path: data/pusht/pusht_cchi_v7_replay.zarr env_runner: _target_: diffusion_policy.env_runner.pusht_image_runner.PushTImageRunner fps: 10 legacy_test: true max_steps: 300 n_action_steps: 8 n_envs: null n_obs_steps: 2 n_test: 50 n_test_vis: 4 n_train: 6 n_train_vis: 2 past_action: false test_start_seed: 100000 train_start_seed: 0 image_shape: - 3 - 96 - 96 name: pusht_image shape_meta: action: shape: - 2 obs: agent_pos: shape: - 2 type: low_dim image: shape: - 3 - 96 - 96 type: rgb task_name: pusht_image training: checkpoint_every: 50 debug: false device: cuda:0 gradient_accumulate_every: 1 lr_scheduler: cosine lr_warmup_steps: 500 max_train_steps: null max_val_steps: null num_epochs: 3050 resume: true rollout_every: 50 sample_every: 5 seed: 42 tqdm_interval_sec: 1.0 use_ema: true val_every: 1 val_dataloader: batch_size: 64 num_workers: 8 persistent_workers: false pin_memory: true shuffle: false
最新发布
06-29
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值