ubuntu20.04+GTX1050Ti+CUDA+CUDNN

博客介绍了CUDA和cuDNN的相关操作,包括查看驱动、删除多余驱动、安装CUDA(注意不安装驱动),在bashrc中添加配置并重新载入,还给出了检查CUDA版本的命令,最后提到在解压目录下查看cuDNN版本的方法。
部署运行你感兴趣的模型镜像

参考

https://blog.youkuaiyun.com/lu_linux/article/details/117171970

注意,等待确认!!!如果有问题参照

https://blog.youkuaiyun.com/m0_52650517/article/details/112908930

 

 

1查看驱动

dpkg -l | grep nvidia

2/删除多余驱动

sudo apt autoremove nvidia* --purge

 

https://www.nvidia.cn/drivers/results/175761/

3、

#赋权限:
 chmod +x NVIDIA-Linux-x86_64-465.31.run
#安装:
sudo ./NVIDIA-Linux-x86_64-465.31.run

 

4、安装cuda

wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.run
sudo sh cuda_11.3.1_465.19.01_linux.run

5/zhu yi一定注意不要安装驱动

not install drivers

6/

chen@chen-OptiPlex-7020:~/chendown/cuda$ sudo sh cuda_11.3.1_465.19.01_linux.run
===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-11.3/
Samples:  Installed in /home/chen/, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-11.3/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.3/lib64, or, add /usr/local/cuda-11.3/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.3/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 465.00 is required for CUDA 11.3 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver

Logfile is /var/log/cuda-installer.log

7/zai在bashrc中添加,主目录中ctrl+h就会出来

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64
export PATH=$PATH:/usr/local/cuda-11.3/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.3

8/重新载入

source ~/.bashrc

9检查cuda

nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Mon_May__3_19:15:13_PDT_2021
Cuda compilation tools, release 11.3, V11.3.109
Build cuda_11.3.r11.3/compiler.29920130_0

10/cudnn,我的版本下载为cudnn-11.3-linux-x64-v8.2.0.53,在解压目录下输入如下:

   sudo cp cuda/include/cudnn* /usr/local/cuda/include/
     
   sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
     
   sudo chmod a+r /usr/local/cuda/include/cudnn*
     
   sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

查看cudnn版本

在终端输入

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

 

 

您可能感兴趣的与本文相关的镜像

PyTorch 2.8

PyTorch 2.8

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值