ubuntu20.04+nvidia 525.105.17+cuda10.2+cudnn8.0+tensorrt8.0+tensorflow+pytorch+Eigen+CeresSolver+g2o

本文介绍如何在Linux环境下安装配置NVIDIA驱动、CUDA、cuDNN、TensorRT等软件,包括详细的步骤说明和常见问题解决方案。

NVIDIA相关软件
nvidia 440.100 + cuda 10.2 + cudnn 8.0
在这里插入图片描述在这里插入图片描述

pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple

适合于: GTX 2080, GTX1650Ti等显卡
文件列表如下:

NVIDIA-Linux-x86_64-440.100.run
cuda-repo-ubuntu1604-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb
cudnn-10.2-linux-x64-v8.0.2.39.tgz
TensorRT-7.1.3.4.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz

cuda和nvidia版本匹配如下:
在这里插入图片描述

1 NVIDIA驱动安装

进入网站 进行选择驱动版本
https://www.nvidia.cn/geforce/drivers/

1.1 软件安装:

1:进入
 Ctrl +Alt+F1 进入命令行模式 18.04
 Ctrl +Alt+F3 进入命令行模式 20.04
安装图形界面

首先需要安装lightdm,主要是用来关闭启动图形界面用,主要管理登录界面,ubuntu20.04需要自行安装,然后选择lightdm即可

sudo apt-get install lightdm


 或者 sudo lightdm service stop
2: 添加
编辑文件 blacklist.conf
sudo vim /etc/modprobe.d/blacklist.conf 在文件最后部分插入以下内容
blacklist nouveau
options nouveau modeset=0
3:跟新
sudo update-initramfs -u
4:查看是否禁用, 无输出,则正常
lsmod | grep nouveau
5:安装
sudo ./NVIDIA-Linux-x86_64-418.56.run -no-x-check -no-opengl-files
-no-x-check:安装驱动时关闭 X 服务
-no-opengl-files:只安装驱动文件,不安装 OpenGL 文件
6:查看,安装
nvidia-smi 查看

20.04文本命令,进入后,使用sudo会出现***,输入密码后可用sudo

退出文本两外方法
单次退出sudo systemctl start graphical.target 20.04


要持续取消Ubuntu 20.04默认进入文本模式,您可以按照以下2个步骤操作:

步骤一:
    修改GRUB配置:
    打开GRUB配置文件:
		sudo nano /etc/default/grub
		修改GRUB命令行,找到 GRUB_CMDLINE_LINUX_DEFAULT 这一行,通常默认值是 quiet splash。将其修改为 quiet splash(去掉 text 参数):
		GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
		更新GRUB配置:
		sudo update-grub
		重启系统:
		sudo reboot

步骤二:
		修改系统启动目标:
	
		如果您的系统使用 systemd,您需要将默认目标从 multi-user.target 更改回 graphical.target:
		
		sudo systemctl set-default graphical.target
		
		重启系统以应用更改:
		
		sudo reboot

Method 2:
sudo add-apt-repository
ppa:graphics-drivers #添加源
sudo apt-get update
sudo apt-cache search nvidia #查找安装包
//会输出 info
sudo ubuntu-drivers devices sudo apt-get install nvidia-390
nvidia-settings nvidia-prime #安装驱动

2 CUDA安装

2.1 软件安装:

sudo dpkg -i cuda-repo-ubuntu1604-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb
//上一步会输出 接下来的命令,:
sudo apt-key add /var/*
sudo dpkg -i cuda-repo-ubuntu1604-10-2-local-10.2.89-440.33.01_1.0-1_amd64.deb
//然后进行安装
sudo apt-get update
sudo apt-get install cuda

如果之前安装过,卸载不干净,
CUDA完全卸载的方法:
sudo apt-get --purge remove “cublas” “cuda*”
sudo apt-get --purge remove “nvidia
sudo apt-get purge nvidia*
sudo apt-get autoremove
sudo apt-get autoclean
sudo rm -rf /usr/local/cuda*

2.2 环境安装:
添加CUDA路径,运行gedit ~/.bashrc

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-10.2
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-10.2/bin:$PATH

接下来运行source ~/.bashrc使设置生效。

2.3 检查CUDA版本

cd /usr/local/cuda-10.2/samples/1_Utilities/deviceQuery
make
sudo ./deviceQuery

若输出最后一行为Result=PASS,则验证成功。

查看环境对不对

echo $LD_LIBRARY_PATH

sudo ldconfig

ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 不是符号连接
ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 不是符号连接
ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 不是符号连接
ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn.so.8 不是符号连接
ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 不是符号连接
ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 不是符号连接
ldconfig: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 不是符号连接



sudo ln -sf /usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn
自编译tensorflow1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.无mkl支持; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 TI 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]://home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: bazel build --config=opt --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
### 安装和配置 Ubuntu 20.04CUDA 11.6、cuDNN 8.2.1TensorRT 8.2.5.1 开发环境 在 Ubuntu 20.04 上配置 CUDA 11.6、cuDNN 8.2.1TensorRT 8.2.5.1 的开发环境,需要确保所有组件的兼容性,并正确安装和配置相关依赖项。以下是详细的步骤和注意事项: #### 1. 确认系统要求和依赖项 首先,确保系统满足以下要求: - Ubuntu 20.04 LTS - 支持 CUDANVIDIA GPU(可以通过 `nvidia-smi` 检查) - GCC 编译器版本与 CUDA 11.6 兼容(通常为 GCC 7-9) 安装必要的依赖项: ```bash sudo apt-get update sudo apt-get install -y build-essential ``` #### 2. 安装 CUDA 11.6 CUDA 11.6 可以通过官方仓库安装。首先下载 CUDA 11.6 的 `.deb` 包并安装: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb sudo cp /var/cuda-repo-ubuntu2004-11-6-local/cuda-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get -y install cuda ``` 安装完成后,设置环境变量: ```bash echo 'export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}}' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc source ~/.bashrc ``` 验证 CUDA 安装: ```bash nvcc --version ``` #### 3. 安装 cuDNN 8.2.1NVIDIA 官方网站下载 cuDNN 8.2.1 的 `.deb` 包,并安装: ```bash wget https://developer.download.nvidia.com/compute/redist/cudnn/v8.2.1/cudnn-local-repo-ubuntu2004-8.2.1.32_1.0-1_amd64.deb sudo dpkg -i cudnn-local-repo-ubuntu2004-8.2.1.32_1.0-1_amd64.deb sudo cp /var/cudnn-local-repo-ubuntu2004-8.2.1.32/cudnn-local-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get install -y libcudnn8=8.2.1.32 ``` 验证 cuDNN 安装: ```bash cat /usr/include/x86_64-linux-gnu/cudnn_version.h | grep CUDNN_MAJOR -A 2 ``` #### 4. 安装 TensorRT 8.2.5.1 TensorRT 8.2.5.1 可以通过 `.deb` 包安装。首先下载并安装: ```bash wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/nvinfer8-local-repo-ubuntu2004-8.2.5.1_1.0-1_amd64.deb sudo dpkg -i nvinfer8-local-repo-ubuntu2004-8.2.5.1_1.0-1_amd64.deb sudo cp /var/nvinfer8-local-repo-ubuntu2004-8.2.5.1/nvinfer-local-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get install -y tensorrt ``` 安装完成后,验证 TensorRT 版本: ```bash dpkg -l | grep TensorRT ``` #### 5. 验证所有组件的兼容性 确保所有组件的版本兼容性,可以通过以下命令检查: ```bash nvidia-smi nvcc --version cat /usr/include/x86_64-linux-gnu/cudnn_version.h | grep CUDNN_MAJOR -A 2 dpkg -l | grep TensorRT ``` #### 6. 配置 Python 环境(可选) 如果计划使用 Python 进行深度学习开发,可以使用 `conda` 或 `venv` 创建虚拟环境,并安装与 CUDA 11.6 兼容的 PyTorchTensorFlow 版本: ```bash sudo apt-get install -y python3-pip pip3 install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 ``` 验证 PyTorch 安装: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` ###
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值