(3)Gymnasium--CartPole的测试基于DQN

该文展示了如何使用Pytorch构建深度Q学习(DQN)算法来解决经典的CartPole平衡问题。代码包括环境设置、ReplayMemory类的设计、DQN网络结构以及训练过程,如策略选择、优化器配置和目标网络更新。

 1、使用Pytorch基于DQN的实现

1.1 主要参考

(1)推荐pytorch官方的教程

Reinforcement Learning (DQN) Tutorial — PyTorch Tutorials 2.0.1+cu117 documentation

(2)

Pytorch 深度强化学习 – CartPole问题|极客笔记

2.2 pytorch官方的教程原理

待续,这两天时期多,过两天整理一下。

2.3代码实现

import gymnasium as gym
import math
import random
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

env = gym.make("CartPole-v1")

# set up matplotlib
# is_ipython = 'inline' in matplotlib.get_backend()
# if is_ipython:
#     from IPython import display

plt.ion()

# if GPU is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Transition = namedtuple('Transition',
                        ('state', 'action', 'next_state', 'reward'))


class ReplayMemory(object):

    def __init__(self, capacity):
        self.memory = deque([], maxlen=capacity)

    def push(self, *args):
        """Save a transition"""
        self.memory.append(Transition(*args))

    def sample(self, batch_size):
        return random.sample(self.memory, batch_size)

    def __len__(self):
        ret
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值