onnx结合opencv使用视频流推理

本文介绍了如何使用Yolov7的deploy配置文件训练ONNX模型,并结合OpenCV处理视频流,通过ffmpeg合成视频并RTMP推流到流媒体服务器。重点在于理解Yolov7训练与部署配置的区别,以及在ONNX模型中处理后处理和非极大值抑制的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重点(本质结构重参数化)

我们可以看到基于YoloV7训练的cfg有两种yaml文件,一个是training文件夹,一个是deploy文件夹,这两种文件夹有啥不一样呢???

大家可以看下下面别人的issuse,,记住这个很关键,就是你选择哪个yaml训练对你后面导出的onnx是很关键的,后面我们会说到。

1、training中的yaml文件最后是采用IDetect,而deploy中的yaml文件采用的是Detect

2、IDetect是在最后一个C5结构输出增加一个add操作,之后在进行conv,然后在mul操作,而Detect则是和v5一样的操作,没有add mul。

3、一句话:deploy模型中自带后处理和nms(非极大值抑制),不需要自己在编写,强烈建议使用deploy进行训练,以下教程根据deploy配置文件进行编写,类似paddlepaddle框架中也有配置

4、否则会报错:too many values to unpack (expected 7),则是因为模型输出不是:float32[Concatoutput_dim_0,7],而是 float32[1,25200

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度物联网

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值