01-复杂度2 Maximum Subsequence Sum(25 分)

本文深入探讨了最大子序列和问题,这是一个经典的算法问题,旨在从整数序列中找到连续子序列的最大和。文章提供了详细的输入输出规范,并通过一个示例展示了如何使用C语言实现该算法。此外,还讨论了当所有数为负数时的特殊情况处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01-复杂度2 Maximum Subsequence Sum (25 分)

Given a sequence of KKK integers {N1,N2,…,NK}\{ N_1, N_2, \dots, N_K \}{N1,N2,,NK}. A continuous subsequence is defined to be {Ni,Ni+1,…,Nj}\{ N_i, N_{i+1}, \dots, N_j \}{Ni,Ni+1,,Nj} where 1≤i≤j≤K1≤i≤j≤K1ijK. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer KKK (≤10000). The second line contains KKK numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices iii and jjj (as shown by the sample case). If all the KKK numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:


#include <stdio.h>

int main(void) {
	int N = 0;
	int arr[100000];
	int thisSub=0,sumSub=0;
	int S=0,D=0,Dmax=0,Smax=0;
	
	scanf("%d",&N);
	for(int i =0 ;i<N;i++){
		scanf("%d",arr+i);
	}
	for(int i =0;i < N;i++){
		   thisSub += arr[i];
		   if(thisSub >= 0){
		      D=i;
		     if(thisSub > sumSub||thisSub==0&&sumSub==0){
		       sumSub = thisSub;
		       Smax=S;
		       Dmax=D;
		     }
		   }
		   else {
		     S = i+1;
		     thisSub = 0;
		   }
		 }
	
	printf("%d %d %d",sumSub,arr[Smax],arr[Dmax==0?N-1:Dmax]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值