01-复杂度2 Maximum Subsequence Sum (25 分)

博客围绕最大子序列和问题展开,给定整数序列,需找出最大子序列的和以及首尾数字。介绍了输入输出规范和示例,还说明了逻辑思路,包括start和end的更新条件、特殊情况处理,如序列全负时的输出规则等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01-复杂度2 Maximum Subsequence Sum (25 分)

Given a sequence of K integers 在这里插入图片描述A continuous subsequence is defined to be 在这里插入图片描述 where 1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4

Note

  1. 逻辑题, 思路有些混乱, 分类情况
    start的更新: sum < 0 && 接下来的子序列比max大 , start更新为i + 1
    end的更新: sum要比max来的大,更新为i, 是大于不是大于等于保证max多次时start,end取小的
    特殊情况: 更新到最后发现sum从来就没大于零 则 输出 0 头 尾
    注:max 初始化为-1 保证能区分全负序列 和 除零以外其他全负序列

Code

#include<iostream>
using namespace std;
const int MAX = 1e4 + 10;
int a[MAX];
int main() {
    int num, sum = 0, max = -1, temp = 0;
    int start = 0, end = 0;
    cin >> num;
    for(int i = 0; i < num; i++) {
        cin >> a[i];
        sum += a[i];
        if(sum > max) { max = sum;  end = i;    start = temp;}
        else if(sum < 0 && i < num - 1){   sum = 0; temp = i + 1;}
        else if(max < 0 && i == num - 1) {max = 0; start = 0; end = num - 1;}
    }
    cout << max << " " << a[start] << " " << a[end];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值