DeepSeek V3+R1满血微调工具上线!可一键启动

部署运行你感兴趣的模型镜像
👇我的小册 AI工具100个实战小案例:(100个AI工具实战小案例) ,原价299,限时早鸟价29,满100人涨10元。

转自:机器之心

DeepSeek V3/ R1 火爆全网,基于原始模型的解决方案和 API 服务已随处可见,陷入低价和免费内卷。

如何站在巨人肩膀上,通过后训练(post-training)结合专业领域数据,低成本打造高质量私有模型,提升业务竞争力与价值?

已收获近 4 万 GitHub Star 的 Colossal-AI,发布开源大模型后训练工具箱,包含:

  • DeepSeek V3/ R1 满血 671B LoRA 低成本 SFT 微调;

  • 完整的强化学习工具链 PPO,GRPO,DPO,SimPO 等;

  • 无缝适配 DeepSeek 系列蒸馏模型在内的 HuggingFace 开源模型;

  • 兼容支持英伟达 GPU、华为昇腾 NPU 等多种硬件;

  • 支持混合精度训练,gradient checkpoint 等训练加速降低成本;

  • 灵活的训练配置接口,支持自定义奖励函数、损失函数等;

  • 提供灵活的并行策略配置接口,包括数据并行、模型并行、专家并行、ZeRO 和 Offload 等,以适应不同硬件规模。

开源地址:https://github.com/hpcaitech/ColossalAI

低成本监督微调满血版 DeepSeek V3/R1 671B

DeepSeek V3/R1 满血版参数高达 6710 亿,如何低成本进行低成本微调呢?仅需以下几个步骤,即可快速完成。

数据集准备

该脚本接收 JSONL 格式的文件作为输入数据集,例如 https://github.com/hpcaitech/ColossalAI/blob/main/applications/ColossalChat/examples/training_scripts/lora_sft_data.jsonl。数据集的每一行应为一个聊天对话列表。例如:

[{'role': 'user', 'content': '你好,最近怎么样?'}, {'role': 'assistant', 'content': '我很好。今天有什么可以帮你的吗?'}]

[{'role': 'user', 'content': '火烧赤壁 曹操为何不拨打 119 求救?'}, {'role': 'assistant', 'content': '因为在三国时期,还没有电话和现代的消防系统,所以曹操无法拨打 119 求救。'}]

该数据格式,兼容 Huggingface chat template,支持自定义 system prompt,因此可灵活按需配置。

模型权重准备

为保证更好的微调效果,使用 BF16 权重进行微调。

如果已下载了 FP8 的 DeepSeek V3/R1 权重,可以使用 DeepSeek 官方脚本 https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/fp8_cast_bf16.py 通过 GPU 将权重转换为 BF16。

对于使用国产华为昇腾算力,可以下载 https://gitee.com/ascend/ModelZoo-PyTorch/blob/master/MindIE/LLM/DeepSeek/DeepSeek-V2/NPU_inference/fp8_cast_bf16.py 脚本转换权重。

使用方法

在准备好数据集和模型权重后,可使用 Colossal-AI 提供的一键启动脚本 https://github.com/hpcaitech/ColossalAI/blob/main/applications/ColossalChat/examples/training_scripts/lora_finetune.py

该脚本与常见 SFT 脚本类似,且完全兼容 HuggingFace PEFT,启动命令:

colossalai run --hostfile path-to-host-file --nprocpernode 8 lorafinetune.py --pretrained path-to-DeepSeek-R1-bf16 --dataset path-to-dataset.jsonl --plugin moe --lr 2e-5 --maxlength 256 -g --ep 8 --pp 3 --batchsize 24 --lorarank 8 --loraalpha 16 --numepochs 2 --warmupsteps 8 --tensorboarddir logs --save_dir DeepSeek-R1-bf16-lora

有关每个参数的更多详细信息,可以运行 python lora_finetune.py --help 查看。该脚本可通过 tensorboard 记录学习率、loss、grad norm 信息,方便对训练进行监控。

使用 LoRA 优化硬件资源消耗

通过使用 LoRA 等优化,示例命令已将 SFT DeepSeek V3/R1 671B 最低硬件要求降低近 10 倍,可使用 32 个 Ascend 910B NPU 64GB(使用 ep=8,pp=4)或 24 个 H100/H800 GPU(使用 ep=8,pp=3)。如果你通过 --zero_cpu_offload 启用 CPU offload,硬件要求可以进一步降低,但会损失一定的训练速度。

如下图验证,在 SFT DeepSeek V3/R1 671B 时,Loss 可以顺利降低:

9094167e7df27ce17f8d51ddb394e979.png

对于资金充裕的开发团队,也可以使用上述脚本,将并行度高效扩展至数百及数千卡,快速完成 DeepSeek V3/R1 671B 全参微调或并行加速。

对于预算有限,又想借助强化学习构建自己的类 DeepSeek R1 模型, Colossal-AI 也提供了解决方案,并利用小模型对算法进行了验证。

通过强化学习微调蒸馏版 DeepSeek

Colossal-AI 团队验证并实现了 DeepSeek 论文中的 GRPO 算法及 verifiable reward,使用 Qwen2.5-3B-Base 模型进行了实验。其中,奖励的设计如下:

1. 奖励 = 0,如果格式是错误的;

2. 奖励 = 1, 如果格式是正确的但是结果是错误的;

3. 奖励 = 10,如果格式与结果都是正确的。

Colossal-AI 团队以 Qwen2.5-3B-Base 模型为例,提供了用于验证 GRPO 的对话模板及设定(https://github.com/hpcaitech/ColossalAI/blob/main/applications/ColossalChat/conversation_template/Qwen_Qwen2.5-3B.json),通过配置以下 bash 文件,即可一键启动:

https://github.com/hpcaitech/ColossalAI/blob/main/applications/ColossalChat/examples/training_scripts/train_grpo.sh

同时,在 GRPO 章节,Colossal-AI 团队还提供了验证过程中的部分发现及各种参数的详细描述,可供参考。 

代码中设计了可灵活配置奖励函数的模板,因此,用户可根据自己的具体情况设计自己的奖励函数体系。

由下图可以看到,即使是 3B 的模型,平均奖励与模型回复长度随着时间逐步增长

7c4dee7757db6f2b41149fbe093643b2.png

随着训练的进行,我们可以看到一些有意思的例子。例如随着训练迭代,模型开始了自我纠正

0d608ad7701f3a08b65ccba7dd47ec28.png

Colossal-AI:最佳后训练工具箱

Colossal-AI 在深耕大模型预训练降本增效的基础上,致力于进一步成为开发者开箱即用的最佳后训练工具,帮助用户基于开源模型,低成本快速构建私有模型。

开源地址:https://github.com/hpcaitech/ColossalAI

图片

最后推荐一下我们团队写的AI工具一本通,现在AI工具非常多,我们团队会对AI视频工具,AI数字人,AI写作,AI绘画,AI抠图,AI编程,AI音乐等主流的领域挖掘相关的工具.

欢迎订阅:原价299 现在早鸟价是29,现在是早期小册刚开始写,越早买越划算,还送永久陪伴群。24小时无理由退款,放心食用!满100人 涨10元,有兴趣的可以提前锁定价格!另外我们会送永久陪伴群,(满100人抽1次),包邮送出一些AI书,每本书的价格都是远超这个小册的门票,算是福利大家,感谢大家的支持。

图片

图片

有兴趣的同学可以,早点下单,锁定价格,越早买越划算!

450a9dcd4c4d53071ca933645c0b427f.png

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值