Inverse Scaling in Test-Time Compute

文章主要内容总结

本文研究了大型推理模型(LRMs)在测试时计算量(推理长度)增加时的性能变化,发现存在逆缩放现象——即推理长度延长反而导致准确率下降。

  1. 研究任务设计:构建了四类评估任务,包括:

    • 带干扰项的简单计数任务(如嵌入数学或代码干扰的计数问题);
    • 带虚假特征的回归任务(如基于学生生活特征预测成绩,含无关特征);
    • 带约束跟踪的演绎任务(如斑马谜题,需处理多约束逻辑推理);
    • 高级AI风险任务(如评估模型自我保护倾向等安全相关行为)。
  2. 主要发现

    • 识别出五种失败模式:Claude模型易被无关信息干扰;OpenAI o系列模型过度拟合问题框架;模型从合理先验转向虚假关联;所有模型在复杂演绎任务中难以保持专注;扩展推理可能放大风险行为(如Claude Sonnet 4的自我保护倾向增强)。
    • 逆缩放现象在自然推理设置(模型自主决定推理长度)中比受控设置(强制延长推理)更显著。
    • 少样本示例可缓解部分逆缩放问题(如回归任务中纠正虚假特征依赖)。
  3. 结论:测试时计算量的盲目增加可能强化模型的有缺陷推理模式,需在不同推理长度下评估模型以解决这些问题。

创新点

# ---------------------------------------------------- # pinn_thermal_lstm_csv.py # Author: Pascal Schirmer # Date: 2025-10-12 # Description: # Physics-informed neural network (PINN) using an LSTM model # for thermal prediction from CSV input data. The script # performs RC identification, model training, and evaluation # with optional visualization. # ---------------------------------------------------- import os import torch.optim as optim import matplotlib.pyplot as plt from dev.estGC import * from src.model import * # ---------------------------------------------------- # Main workflow # ---------------------------------------------------- def main(): # ------------------------------- # Config / Parameters # ------------------------------- TRAIN_MODEL = True ENABLE_PLOTS = True DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(BASE_DIR, "data", "motor_temp.csv") # Fixed Thermal parameters Rth = [] # Thermal resistance foster network [K/W] Cth = [] # Thermal capacitance foster network [Ws/K] # Motor parameters Rs = 14.1e-3 # Stator resistance [Ohm] alpha = 0.00393 # Temperature coefficient of resistance [1/°C] Tref = 20 # Reference temperature for Rs [°C] n_max = 6000 # Maximum motor speed [rpm] beta_1 = 0.315 # Parameter for frequency losses (linear) beta_2 = 0.616 # Parameter for frequency losses (quadratic) k1 = 0.719 k2 = -0.059 k3 = 0.069 k4 = -0.619 alpha_Fe = -0.71 # Training hyperparameters seq_len = 600 # Sequence length (timesteps per training sample) stride = 50 # Step size between training sequences batch_size = 32 # Batch size for training hidden_dim = 8 # Hidden units in LSTM layers num_layers = 2 # Number of stacked LSTM layers lr = 1e-3 # Learning rate for optimizer epochs = 20 # Maximum number of training epochs lambda_phys = 0.1 # Weight for physics-informed loss term lambda_init = 0.0 # Weight for initial condition loss (currently unused) patience = 10 # Early stopping patience (epochs without improvement) # Dataset split IDs test_ids = [60, 62, 74] # IDs used for test set evaluation val_ids = [10, 48, 63] # IDs used for validation set selection # ------------------------------- # Load CSV data # ------------------------------- df = pd.read_csv(DATA_PATH) # ------------------------------- # RC Identification # ------------------------------- id_list = [2, 3, 5, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 24] id_data = [] dt_s = 1.0 for id_sel in id_list: df_step = df[df["id"] == id_sel].copy().head(3500) time_step = df_step["time"].values - df_step["time"].values[0] dt_s = np.mean(np.diff(time_step)) # Temperatures (replace with your stator and rotor columns) T_s = df_step["Tsw"].values T_r = df_step["Trm"].values T_amb = df_step["Tc"].values Is = df_step["Is"].values / np.sqrt(2) Id = df_step["Id"].values Iq = df_step["Iq"].values Us = df_step["Us"].values / np.sqrt(2) Ud = df_step["Ud"].values Uq = df_step["Uq"].values Wm = df_step["Wm"].values Mm = df_step["Mm"].values f1 = (1 + alpha * (T_s - Tref)) f2 = 1 + beta_1 * (Wm / n_max) + beta_2 * (Wm / n_max) ** 2 P_s = 3 * Rs * Is ** 2 * f1 * f2 P_el = -3/2 * (Ud*Id + Uq*Iq) P_mech = 2 * np.pi * Wm / 60 * Mm P_res = (P_el - P_mech) - P_s k = k1 + k2 * Is + k3 * Wm + k4 * Is * Wm P_r = (1 - k) * P_res * (1 + alpha_Fe * (T_r - Tref)) T_nodes = np.stack([T_s, T_r], axis=1) P_inputs = np.stack([P_s, P_r], axis=1) C_diag, G, _, _ = est_CG(T_nodes, P_inputs, T_amb, dt_s) id_data.append({ "id": id_sel, "Is": np.mean(Is), "Wm": np.mean(Wm), "G_ss": G[0, 0], "G_sr": G[0, 1], "G_rs": G[1, 0], "G_rr": G[1, 1], "C_s": C_diag[0], "C_r": C_diag[1], }) df_ident = pd.DataFrame(id_data) print(df_ident.head()) C_hat = np.array([df_ident["C_s"].mean(), df_ident["C_r"].mean()]) G_hat = np.array([[df_ident["G_ss"].mean(), df_ident["G_sr"].mean()], [df_ident["G_rs"].mean(), df_ident["G_rr"].mean()]]) # ------------------------------- # Feature preparation # ------------------------------- # Losses P_el = 3 * df["Is"] * df["Us"] P_mech = 2 * np.pi * df["Wm"] / 60 * df["Mm"] Pv_sw = 3 * Rs * df["Is"] ** 2 P_res = (P_el - P_mech) - Pv_sw k = k1 + k2 * df["Is"] + k3 * df["Wm"] + k4 * df["Is"] * df["Wm"] Pv_rm = (1 - k) * P_res P_in = np.stack([Pv_sw, Pv_rm], axis=1) # Temperatures T_pred = calc_T(C_hat, G_hat, P_in, df["Tc"], T0=None, dt=1.0) # Calc features f1 = (1 + alpha * (df["Tc"] - Tref)) f2 = 1 + beta_1 * (df["Wm"] / n_max) + beta_2 * (df["Wm"] / n_max) ** 2 f3 = (1 + alpha_Fe * (df["Tc"] - Tref)) df["Pv_s"] = Pv_sw * f1 * f2 df["Pv_r"] = Pv_rm * f3 df["Sel"] = 3 * df["Is"] * df["Us"] df["SelI"] = df["Sel"] * df["Is"] df["SelW"] = df["Sel"] * df["Wm"] # Remove features feature_cols = [c for c in df.columns if c not in ["id", "time", "time_id", "T0", "Tsw", "Tst", "Tso", "Trm"]] # ------------------------------- # Data Splitting # ------------------------------- train_ids = [i for i in df["id"].unique() if i not in test_ids + val_ids] df_train = df[df["id"].isin(train_ids)].copy() df_val = df[df["id"].isin(val_ids)].copy() df_test = df[df["id"].isin(test_ids)].copy() # ------------------------------- # Normalize and Scale # ------------------------------- # Norm values X_mean, X_std = df_train[feature_cols].mean(), df_train[feature_cols].std() + 1e-8 T_min, T_max = df_train["Tsw"].min(), df_train["Tsw"].max() # Normalize X_train, T_train, Tamb_train = normalize(df_train, feature_cols, X_mean, X_std, T_max, T_min) X_val, T_val, Tamb_val = normalize(df_val, feature_cols, X_mean, X_std, T_max, T_min) # Calc Power P_train = np.zeros((len(train_ids), 2)) P_val = np.zeros((len(val_ids), 2)) P_train[:, 0] = df_train["Pv_s"].values() P_train[:, 1] = df_train["Pv_r"].values() P_val[:, 0] = df_val["Pv_s"].values() P_val[:, 1] = df_val["Pv_r"].values() # ------------------------------- # DataLoaders # ------------------------------- train_loader = prepare_loader(X_train, T_train, P_train, Tamb_train, df_train["time_id"].values, df_train["T0"].values, seq_len, stride, batch_size, DEVICE, df[df["id"].isin(test_ids)]["id"].to_numpy(), shuffle=False) val_loader = prepare_loader(X_val, T_val, P_val, Tamb_val, df_val["time_id"].values, df_val["T0"].values, seq_len, stride, batch_size, DEVICE, df[df["id"].isin(test_ids)]["id"].to_numpy(), shuffle=False) # ------------------------------- # Model setup # ------------------------------- n_features = len(feature_cols) model = LSTM_PINN(input_dim=n_features, hidden_dim=hidden_dim, num_layers=num_layers).to(DEVICE) optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=3) dt_torch = torch.tensor(dt_s, dtype=torch.float32, device=DEVICE) best_val_loss = np.inf patience_counter = 0 # ------------------------------- # Training loop # ------------------------------- if TRAIN_MODEL: for ep in range(epochs): model.train() total_loss, data_loss, phys_loss, init_loss = 0, 0, 0, 0 for Xb, Tb, Pb, Tambb, t_seq, T0b in train_loader: optimizer.zero_grad() loss, d_mse, p_mse, i_mse = pinn_loss_lstm(model, Xb, Tb, Pb, t_seq, T0b, dt_torch, G_hat, C_hat, Tambb, T_min, T_max, lambda_phys, lambda_init) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() total_loss += loss.item() data_loss += d_mse phys_loss += p_mse init_loss += i_mse # Validation model.eval() val_total, val_data, val_phys, val_init = 0, 0, 0, 0 with torch.no_grad(): for Xv, Tv, Pv, Tambv, tv_seq, T0v in val_loader: v_loss, v_dmse, v_pmse, v_imse = pinn_loss_lstm(model, Xv, Tv, Pv, tv_seq, T0v, dt_torch, G_hat, C_hat, Tambv, T_min, T_max, lambda_phys, lambda_init) val_total += v_loss.item() val_data += v_dmse val_phys += v_pmse val_init += v_imse train_loss = total_loss / len(train_loader) val_loss = val_total / len(val_loader) scheduler.step(val_loss) current_lr = optimizer.param_groups[0]['lr'] print(f"Epoch {ep+1:03d} | LR={current_lr:.6f} | " f"Train={train_loss:.6f} | Val={val_loss:.6f} | " f"Data={val_data/len(val_loader):.6f} | Phys={val_phys/len(val_loader):.6f} | " f"Init={val_init/len(val_loader):.6f}") # Early stopping if val_loss < best_val_loss: best_val_loss = val_loss patience_counter = 0 torch.save(model.state_dict(), "../mdl/mdl_opti_pinn.pt") else: patience_counter += 1 if patience_counter >= patience: print("Early stopping triggered.") break # ------------------------------- # Test evaluation # ------------------------------- model.load_state_dict(torch.load("../mdl/mdl_opti_pinn.pt")) model.eval() for sid in test_ids: print(f"\n🔹 Evaluating Test Session ID: {sid}") # Select session-specific data df_session = df_test[df_test["id"] == sid].copy() if df_session.empty: print(f"⚠️ No data found for session {sid}, skipping.") continue # Prepare physics-informed scaling P_test = np.stack([df_session["Pv_s"], df_session["Pv_r"]], axis=1) # RC model prediction T_pred_rc = calc_T(C_hat, G_hat, P_in, df["Tc"], T0=None, dt=1.0) # Prepare neural network input X_test, T_test, _, _ = normalize(df_session, feature_cols, X_mean, X_std, T_max, T_min, Rs) with torch.no_grad(): X_tensor = torch.tensor(X_test, dtype=torch.float32, device=DEVICE).unsqueeze(0) T_pred_nn = model(X_tensor).cpu().numpy().reshape(-1) # Inverse normalization T_true_nn = T_test * (T_max - T_min) + T_min T_pred_nn_phys = T_pred_nn * (T_max - T_min) + T_min # Compute errors err_rc = T_pred_rc - T_true_nn err_nn = T_pred_nn_phys - T_true_nn mse_test_rc = np.mean(err_rc ** 2) mse_test_nn = np.mean(err_nn ** 2) print(f"RC MSE (°C): {mse_test_rc:.4f}") print(f"NN MSE (°C): {mse_test_nn:.4f}") # ------------------------------- # Plotting per session # ------------------------------- if ENABLE_PLOTS: time = np.linspace(0, (len(err_rc) - 1) / 60, len(err_rc)) # time in minutes fig, axs = plt.subplots(2, 1, figsize=(10, 6), sharex=True) fig.suptitle(f"Session ID {sid} – Model Comparison", fontsize=12, fontweight="bold") # ▪️ Top: Temperatures axs[0].plot(time, T_true_nn, label="Measured", color="black", linewidth=2) axs[0].plot(time, T_pred_rc, label="Pred RC", linewidth=1.8) axs[0].plot(time, T_pred_nn_phys, label="Pred NN", linewidth=1.8) axs[0].set_ylabel("Temperature [°C]") axs[0].legend(loc="best") axs[0].grid(True, linestyle="--", linewidth=0.6) # ▪️ Bottom: Errors axs[1].plot(time, err_rc, label="RC Error") axs[1].plot(time, err_nn, label="NN Error") axs[1].axhline(0, color="black", linewidth=1) axs[1].set_xlabel("Time [min]") axs[1].set_ylabel("Error [°C]") axs[1].legend(loc="best") axs[1].grid(True, linestyle="--", linewidth=0.6) plt.tight_layout() plt.show() # ---------------------------------------------------- # Entry point # ---------------------------------------------------- if __name__ == "__main__": main()
11-13
""" Outlier Detection Toolbox ========================= This is a single-file distribution (for ease of preview) of a production-grade outlier/anomaly detection toolbox intended to be split into a small package: outlier_detection/ ├── __init__.py ├── utils.py ├── statistical.py ├── distance_density.py ├── model_based.py ├── deep_learning.py ├── ensemble.py ├── visualization.py └── cli.py --- NOTE --- This code block contains *all* modules concatenated (with file headers) so you can preview and copy each file out into separate .py files. When you save them as separate files the package will work as expected. Design goals (what you asked for): - Detailed, well-documented functions (purpose, math, applicability, edge-cases) - Robust handling of NaNs, constant columns, categorical data - Functions return structured metadata + masks + scores so you can inspect - Utilities for ensemble combining methods and producing a readable report - Optional deep learning methods (AutoEncoder/VAE) with clear dependency instructions and graceful error messages if libraries are missing. Dependencies (recommended): pip install numpy pandas scipy scikit-learn matplotlib joblib tensorflow>=2.0 If you prefer PyTorch for deep models you can adapt deep_learning.py accordingly. """ # --------------------------- # File: outlier_detection/__init__.py # --------------------------- __version__ = "0.1.0" # make it easy to import core helpers from typing import Dict from .utils import ensure_dataframe, OutlierResult, summarize_results, recommend_methods from .statistical import z_score_method, modified_z_score, iqr_method, grubbs_test from .distance_density import lof_method, mahalanobis_method, dbscan_method, knn_distance_method from .model_based import ( isolation_forest_method, one_class_svm_method, pca_reconstruction_error, gmm_method, elliptic_envelope_method, ) # deep_learning module is optional (heavy dependency) try: from .deep_learning import autoencoder_method, vae_method except Exception: # graceful: user may not have TF installed; import will raise at use time autoencoder_method = None vae_method = None from .ensemble import ensemble_methods, aggregate_scores from .visualization import plot_boxplot, plot_pair_scatter __all__ = [ "__version__", "ensure_dataframe", "OutlierResult", "summarize_results", "recommend_methods", "z_score_method", "modified_z_score", "iqr_method", "grubbs_test", "lof_method", "mahalanobis_method", "dbscan_method", "knn_distance_method", "isolation_forest_method", "one_class_svm_method", "pca_reconstruction_error", "gmm_method", "elliptic_envelope_method", "autoencoder_method", "vae_method", "ensemble_methods", "aggregate_scores", "plot_boxplot", "plot_pair_scatter", ] # --------------------------- # File: outlier_detection/utils.py # --------------------------- """ Utilities for the outlier detection package. Key responsibilities: - Input validation and type normalization - Handling numeric / categorical separation - Standardization and robust scaling helpers - A consistent result object shape used by all detectors """ from typing import Dict, Any, Tuple, Optional, List import numpy as np import pandas as pd import logging logger = logging.getLogger(__name__) # A simple, documented result schema for detector functions. # Each detector returns a dict with these keys (guaranteed): # - 'mask': pd.Series[bool] same index as input rows; True means OUTLIER # - 'score': pd.Series or pd.DataFrame numeric score (bigger usually means more anomalous) # - 'method': short string # - 'params': dict of parameters used # - 'explanation': short textual note about interpretation OutlierResult = Dict[str, Any] def ensure_dataframe(X) -> pd.DataFrame: """ Convert input into a pandas DataFrame with a stable integer index. Accepts: pd.DataFrame, np.ndarray, list-of-lists, pd.Series. Returns DataFrame with numeric column names if necessary. """ if isinstance(X, pd.DataFrame): df = X.copy() elif isinstance(X, pd.Series): df = X.to_frame() else: # try to coerce df = pd.DataFrame(X) # if no index or non-unique, reset if df.index is None or not df.index.is_unique: df = df.reset_index(drop=True) # name numeric columns if unnamed df.columns = [str(c) for c in df.columns] return df def numeric_only(df: pd.DataFrame, return_cols: bool = False) -> pd.DataFrame: """ Select numeric columns and warn if non-numeric columns are dropped. If no numeric columns found raises ValueError. """ df = ensure_dataframe(df) numeric_df = df.select_dtypes(include=["number"]).copy() non_numeric = [c for c in df.columns if c not in numeric_df.columns] if non_numeric: logger.debug("Dropping non-numeric columns for numeric-only detectors: %s", non_numeric) if numeric_df.shape[1] == 0: raise ValueError("No numeric columns available for numeric detectors. Consider encoding categoricals.") if return_cols: return numeric_df, list(numeric_df.columns) return numeric_df def handle_missing(df: pd.DataFrame, strategy: str = "drop", fill_value: Optional[float] = None) -> pd.DataFrame: """ Handle missing values in data before passing to detectors. Parameters ---------- df : DataFrame strategy : {'drop', 'mean', 'median', 'zero', 'constant', 'keep'} - 'drop' : drop rows with any NaN (useful when most values are present) - 'mean' : fill numeric columns with mean - 'median' : fill numeric with median - 'zero' : fill with 0 - 'constant' : fill with supplied fill_value - 'keep' : keep NaNs (many detectors can handle NaN rows implicitly) fill_value : numeric (used when strategy=='constant') Returns ------- DataFrame cleaned according to strategy. Original index preserved. Notes ----- - Some detectors (LOF, IsolationForest) do NOT accept NaNs; choose strategy accordingly. """ df = df.copy() if strategy == "drop": return df.dropna(axis=0, how="any") elif strategy == "mean": return df.fillna(df.mean()) elif strategy == "median": return df.fillna(df.median()) elif strategy == "zero": return df.fillna(0) elif strategy == "constant": if fill_value is None: raise ValueError("fill_value must be provided for strategy='constant'") return df.fillna(fill_value) elif strategy == "keep": return df else: raise ValueError(f"Unknown missing value strategy: {strategy}") def robust_scale(df: pd.DataFrame) -> pd.DataFrame: """ Scale numeric columns using median and IQR (robust to outliers). Returns a DataFrame of same shape with scaled values. """ df = numeric_only(df) med = df.median() q1 = df.quantile(0.25) q3 = df.quantile(0.75) iqr = q3 - q1 # avoid division by zero iqr_replaced = iqr.replace(0, 1.0) return (df - med) / iqr_replaced def create_result(mask: pd.Series, score: pd.Series, method: str, params: Dict[str, Any], explanation: str) -> OutlierResult: """ Wrap mask + score into the standard result dict. """ # ensure index alignment if not mask.index.equals(score.index): # try to reindex score = score.reindex(mask.index) return { "mask": mask.astype(bool), "score": score, "method": method, "params": params, "explanation": explanation, } def summarize_results(results: Dict[str, OutlierResult]) -> pd.DataFrame: """ Given a dict of results keyed by method name, return a single DataFrame where each column is that method's boolean flag and another column is the score (if numeric). Also returns a short per-row summary like how many detectors flagged the row. """ # Collect masks and scores masks = {} scores = {} for k, r in results.items(): masks[f"{k}_flag"] = r["mask"].astype(int) # flatten score: if DataFrame use mean across columns sc = r["score"] if isinstance(sc, pd.DataFrame): sc = sc.mean(axis=1) scores[f"{k}_score"] = sc masks_df = pd.DataFrame(masks) scores_df = pd.DataFrame(scores) combined = pd.concat([masks_df, scores_df], axis=1) combined.index = next(iter(results.values()))["mask"].index combined["n_flags"] = masks_df.sum(axis=1) combined["any_flag"] = combined["n_flags"] > 0 return combined def recommend_methods(X: pd.DataFrame) -> List[str]: """ Heuristic recommender: returns a short list of methods to try depending on data shape. Rules (simple heuristics): - single numeric column: ['iqr', 'modified_z'] - low-dimensional (n_features <= 10) and numeric: ['mahalanobis','lof','isolation_forest'] - high-dimensional (n_features > 10): ['isolation_forest','pca','autoencoder'] """ df = ensure_dataframe(X) n_features = df.select_dtypes(include=["number"]).shape[1] if n_features == 0: raise ValueError("No numeric features to recommend methods for") if n_features == 1: return ["iqr", "modified_z"] elif n_features <= 10: return ["mahalanobis", "lof", "isolation_forest"] else: return ["isolation_forest", "pca", "autoencoder"] # --------------------------- # File: outlier_detection/statistical.py # --------------------------- """ Statistical / univariate outlier detectors. Each function focuses on single-dimension input (pd.Series) or will operate column-wise if given a DataFrame (then returns DataFrame of scores / masks). """ from typing import Union import numpy as np import pandas as pd from scipy import stats from .utils import create_result, numeric_only def _as_series(x: Union[pd.Series, pd.DataFrame], col: str = None) -> pd.Series: if isinstance(x, pd.DataFrame): if col is None: raise ValueError("If passing DataFrame, must pass column name") return x[col] return x def z_score_method(x: Union[pd.Series, pd.DataFrame], threshold: float = 3.0) -> OutlierResult: """ Z-Score method (univariate) Math: z = (x - mean) / std Flag where |z| > threshold. Applicability: single numeric column, approximately normal distribution. Not robust to heavy-tailed distributions. Returns OutlierResult with score = |z| (higher => more anomalous). """ if isinstance(x, pd.DataFrame): # apply per-column and return a DataFrame score masks = pd.DataFrame(index=x.index) scores = pd.DataFrame(index=x.index) for c in x.columns: res = z_score_method(x[c], threshold=threshold) masks[c] = res["mask"].astype(int) scores[c] = res["score"] # Derive a combined mask: any column flagged mask_any = masks.sum(axis=1) > 0 combined_score = scores.mean(axis=1) return create_result(mask_any, combined_score, "z_score_dataframe", {"threshold": threshold}, "Applied z-score per-column and combined by mean score and any-flag") s = x.dropna() if s.shape[0] == 0: mask = pd.Series([False]*len(x), index=x.index) score = pd.Series([0.0]*len(x), index=x.index) return create_result(mask, score, "z_score", {"threshold": threshold}, "Empty or all-NaN series") mu = s.mean() sigma = s.std(ddof=0) if sigma == 0: score = pd.Series(0.0, index=x.index) mask = pd.Series(False, index=x.index) explanation = "Zero variance: no z-score possible" return create_result(mask, score, "z_score", {"threshold": threshold}, explanation) z = (x - mu) / sigma absz = z.abs() mask = absz > threshold score = absz.fillna(0.0) explanation = f"z-score with mean={mu:.4g}, std={sigma:.4g}; flag |z|>{threshold}" return create_result(mask, score, "z_score", {"threshold": threshold}, explanation) def modified_z_score(x: Union[pd.Series, pd.DataFrame], threshold: float = 3.5) -> OutlierResult: """ Modified Z-score using median and MAD (robust to extreme values). Formula: M_i = 0.6745 * (x_i - median) / MAD Where MAD = median(|x_i - median|) Recommended threshold: 3.5 (common in literature) """ if isinstance(x, pd.DataFrame): masks = pd.DataFrame(index=x.index) scores = pd.DataFrame(index=x.index) for c in x.columns: res = modified_z_score(x[c], threshold=threshold) masks[c] = res["mask"].astype(int) scores[c] = res["score"] mask_any = masks.sum(axis=1) > 0 combined_score = scores.mean(axis=1) return create_result(mask_any, combined_score, "modified_z_dataframe", {"threshold": threshold}, "Applied modified z per-column and combined") s = x.dropna() if len(s) == 0: return create_result(pd.Series(False, index=x.index), pd.Series(0.0, index=x.index), "modified_z", {"threshold": threshold}, "empty") med = np.median(s) mad = np.median(np.abs(s - med)) if mad == 0: # all equal or too small score = pd.Series(0.0, index=x.index) mask = pd.Series(False, index=x.index) return create_result(mask, score, "modified_z", {"threshold": threshold}, "mad==0: no variation") M = 0.6745 * (x - med) / mad score = M.abs().fillna(0.0) mask = score > threshold return create_result(mask, score, "modified_z", {"threshold": threshold, "median": med, "mad": mad}, "Robust modified z-score; higher => more anomalous") def iqr_method(x: Union[pd.Series, pd.DataFrame], k: float = 1.5) -> OutlierResult: """ IQR (boxplot) method. Flags points outside [Q1 - k*IQR, Q3 + k*IQR]. k=1.5 is common; use larger k for fewer false positives. """ if isinstance(x, pd.DataFrame): masks = pd.DataFrame(index=x.index) scores = pd.DataFrame(index=x.index) for c in x.columns: res = iqr_method(x[c], k=k) masks[c] = res["mask"].astype(int) scores[c] = res["score"] mask_any = masks.sum(axis=1) > 0 combined_score = scores.mean(axis=1) return create_result(mask_any, combined_score, "iqr_dataframe", {"k": k}, "Applied IQR per column") s = x.dropna() if s.shape[0] == 0: return create_result(pd.Series(False, index=x.index), pd.Series(0.0, index=x.index), "iqr", {"k": k}, "empty") q1 = np.percentile(s, 25) q3 = np.percentile(s, 75) iqr = q3 - q1 lower = q1 - k * iqr upper = q3 + k * iqr mask = (x < lower) | (x > upper) # score: distance from nearest fence normalized by iqr (if iqr==0 use abs distance) if iqr == 0: score = (x - q1).abs().fillna(0.0) else: score = pd.Series(0.0, index=x.index) score[x < lower] = ((lower - x[x < lower]) / (iqr + 1e-12)) score[x > upper] = ((x[x > upper] - upper) / (iqr + 1e-12)) return create_result(mask.fillna(False), score.fillna(0.0), "iqr", {"k": k, "q1": q1, "q3": q3}, f"IQR fences [{lower:.4g}, {upper:.4g}]") def grubbs_test(x: Union[pd.Series, pd.DataFrame], alpha: float = 0.05) -> OutlierResult: """ Grubbs' test for a single outlier (requires approx normality). This test is intended to *detect one outlier at a time*. Use iteratively (recompute after removing detected outlier) if you expect multiple outliers, but be careful with multiplicity adjustments. Returns mask with at most one True (the most extreme point) unless alpha is very large. """ # For simplicity operate only on a single series. If DataFrame provided, # run per-column and combine (like other funcs) if isinstance(x, pd.DataFrame): masks = pd.DataFrame(index=x.index) scores = pd.DataFrame(index=x.index) for c in x.columns: res = grubbs_test(x[c], alpha=alpha) masks[c] = res["mask"].astype(int) scores[c] = res["score"] mask_any = masks.sum(axis=1) > 0 combined_score = scores.mean(axis=1) return create_result(mask_any, combined_score, "grubbs_dataframe", {"alpha": alpha}, "Applied Grubbs per column") from math import sqrt s = x.dropna() n = len(s) if n < 3: return create_result(pd.Series(False, index=x.index), pd.Series(0.0, index=x.index), "grubbs", {"alpha": alpha}, "n<3: cannot run") mean = s.mean() std = s.std(ddof=0) if std == 0: return create_result(pd.Series(False, index=x.index), pd.Series(0.0, index=x.index), "grubbs", {"alpha": alpha}, "zero std") # compute G statistic for max dev deviations = (s - mean).abs() max_idx = deviations.idxmax() G = deviations.loc[max_idx] / std # critical value from t-distribution t_crit = stats.t.ppf(1 - alpha / (2 * n), n - 2) G_crit = ((n - 1) / sqrt(n)) * (t_crit / sqrt(n - 2 + t_crit ** 2)) mask = pd.Series(False, index=x.index) mask.loc[max_idx] = G > G_crit score = pd.Series(0.0, index=x.index) score.loc[max_idx] = float(G) explanation = f"G={G:.4g}, Gcrit={G_crit:.4g}, alpha={alpha}" return create_result(mask, score, "grubbs", {"alpha": alpha, "G": G, "Gcrit": G_crit}, explanation) # --------------------------- # File: outlier_detection/distance_density.py # --------------------------- """ Distance and density based detectors (multivariate-capable). Functions generally accept a numeric DataFrame X and return OutlierResult. """ from sklearn.neighbors import LocalOutlierFactor, NearestNeighbors from sklearn.cluster import DBSCAN from sklearn.covariance import EmpiricalCovariance from .utils import ensure_dataframe, create_result, numeric_only def lof_method(X, n_neighbors: int = 20, contamination: float = 0.05) -> OutlierResult: """ Local Outlier Factor (LOF). Returns score = -lof. LOF API returns negative_outlier_factor_. We negate so higher score => more anomalous. Applicability: medium-dimensional data, clusters of varying density. Beware: LOF does not provide a predictable probabilistic threshold. """ X = ensure_dataframe(X) Xnum = numeric_only(X) if Xnum.shape[0] < 2: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "lof", {"n_neighbors": n_neighbors}, "too few samples") lof = LocalOutlierFactor(n_neighbors=min(n_neighbors, max(1, Xnum.shape[0]-1)), contamination=contamination) y = lof.fit_predict(Xnum) negative_factor = lof.negative_outlier_factor_ # higher -> more anomalous score = (-negative_factor) score = pd.Series(score, index=Xnum.index) mask = pd.Series(y == -1, index=Xnum.index) return create_result(mask, score, "lof", {"n_neighbors": n_neighbors, "contamination": contamination}, "LOF: higher score more anomalous") def knn_distance_method(X, k: int = 5) -> OutlierResult: """ k-NN distance based scoring: compute distance to k-th nearest neighbor. Points with large k-distance are candidate outliers. Returns score = k-distance (bigger => more anomalous). """ X = ensure_dataframe(X) Xnum = numeric_only(X) if Xnum.shape[0] < k + 1: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "knn_distance", {"k": k}, "too few samples") nbrs = NearestNeighbors(n_neighbors=k + 1).fit(Xnum) distances, _ = nbrs.kneighbors(Xnum) # distances[:, 0] is zero (self). take k-th neighbor kdist = distances[:, k] score = pd.Series(kdist, index=Xnum.index) # threshold: e.g., mean + 2*std thr = score.mean() + 2 * score.std() mask = score > thr return create_result(mask, score, "knn_distance", {"k": k, "threshold": thr}, "k-distance method") def mahalanobis_method(X, threshold_p: float = 0.01) -> OutlierResult: """ Mahalanobis distance based detection. Computes D^2 for each point. One can threshold by chi-square quantile with df=n_features: P(D^2 > thresh) = threshold_p. We return score = D^2. Applicability: data approximately elliptical (multivariate normal-ish). """ X = ensure_dataframe(X) Xnum = numeric_only(X) n, d = Xnum.shape if n <= d: # covariance ill-conditioned; apply shrinkage or PCA beforehand explanation = "n <= n_features: covariance may be singular, consider PCA or regularization" else: explanation = "" cov = EmpiricalCovariance().fit(Xnum) mahal = cov.mahalanobis(Xnum) score = pd.Series(mahal, index=Xnum.index) # default threshold: chi2 quantile from scipy.stats import chi2 thr = chi2.ppf(1 - threshold_p, df=d) if d > 0 else np.inf mask = score > thr return create_result(mask, score, "mahalanobis", {"threshold_p": threshold_p, "chi2_thr": float(thr)}, explanation) def dbscan_method(X, eps: float = 0.5, min_samples: int = 5) -> OutlierResult: """ DBSCAN clusterer: points labeled -1 are considered noise -> outliers. Applicability: non-spherical clusters, variable density; choose eps carefully. """ X = ensure_dataframe(X) Xnum = numeric_only(X) if Xnum.shape[0] < min_samples: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "dbscan", {"eps": eps, "min_samples": min_samples}, "too few samples") db = DBSCAN(eps=eps, min_samples=min_samples).fit(Xnum) labels = db.labels_ mask = pd.Series(labels == -1, index=Xnum.index) # score: negative of cluster size (noise points get score 1) # To keep simple: noise -> 1, else 0 score = pd.Series((labels == -1).astype(float), index=Xnum.index) return create_result(mask, score, "dbscan", {"eps": eps, "min_samples": min_samples}, "DBSCAN noise points flagged") # --------------------------- # File: outlier_detection/model_based.py # --------------------------- """ Model-based detectors: tree ensembles, SVM boundary, PCA reconstruction, GMM These functions are intended for multivariate numeric data. """ from sklearn.ensemble import IsolationForest from sklearn.svm import OneClassSVM from sklearn.decomposition import PCA from sklearn.mixture import GaussianMixture from sklearn.covariance import EllipticEnvelope from .utils import ensure_dataframe, numeric_only, create_result def isolation_forest_method(X, contamination: float = 0.05, random_state: int = 42) -> OutlierResult: """ Isolation Forest Returns mask and anomaly score (higher => more anomalous). Good general-purpose method for medium-to-high dimensional data. """ X = ensure_dataframe(X) Xnum = numeric_only(X) if Xnum.shape[0] < 2: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "isolation_forest", {"contamination": contamination}, "too few samples") iso = IsolationForest(contamination=contamination, random_state=random_state) iso.fit(Xnum) pred = iso.predict(Xnum) # decision_function: higher -> more normal, so we invert raw_score = -iso.decision_function(Xnum) score = pd.Series(raw_score, index=Xnum.index) mask = pd.Series(pred == -1, index=Xnum.index) return create_result(mask, score, "isolation_forest", {"contamination": contamination}, "IsolationForest: inverted decision function as score") def one_class_svm_method(X, kernel: str = "rbf", nu: float = 0.05, gamma: str = "scale") -> OutlierResult: """ One-Class SVM for boundary-based anomaly detection. Carefully tune nu and gamma; not robust to large datasets without subsampling. """ X = ensure_dataframe(X) Xnum = numeric_only(X) if Xnum.shape[0] < 5: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "one_class_svm", {"nu": nu}, "too few samples") ocsvm = OneClassSVM(kernel=kernel, nu=nu, gamma=gamma) ocsvm.fit(Xnum) pred = ocsvm.predict(Xnum) # decision_function: positive => inside boundary (normal); invert raw_score = -ocsvm.decision_function(Xnum) score = pd.Series(raw_score, index=Xnum.index) mask = pd.Series(pred == -1, index=Xnum.index) return create_result(mask, score, "one_class_svm", {"nu": nu, "kernel": kernel}, "OneClassSVM: invert decision_function for anomaly score") def pca_reconstruction_error(X, n_components: int = None, explained_variance: float = None, threshold: float = None) -> OutlierResult: """ PCA-based reconstruction error. If n_components not set, choose the minimum components to reach explained_variance (if provided). Otherwise uses min(n_features, 2). Score: squared reconstruction error per sample. Default threshold: mean+3*std. """ X = ensure_dataframe(X) Xnum = numeric_only(X) n, d = Xnum.shape if n == 0 or d == 0: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "pca_recon", {}, "empty data") if n_components is None: if explained_variance is not None: temp_pca = PCA(n_components=min(n, d)) temp_pca.fit(Xnum) cum = np.cumsum(temp_pca.explained_variance_ratio_) n_components = int(np.searchsorted(cum, explained_variance) + 1) n_components = max(1, n_components) else: n_components = min(2, d) pca = PCA(n_components=n_components) proj = pca.fit_transform(Xnum) recon = pca.inverse_transform(proj) errors = ((Xnum - recon) ** 2).sum(axis=1) score = pd.Series(errors, index=Xnum.index) if threshold is None: threshold = score.mean() + 3 * score.std() mask = score > threshold return create_result(mask, score, "pca_recon", {"n_components": n_components, "threshold": float(threshold)}, "PCA reconstruction error") def gmm_method(X, n_components: int = 2, contamination: float = 0.05) -> OutlierResult: """ Gaussian Mixture Model based anomaly score (log-likelihood). Score: negative log-likelihood (bigger => less likely => more anomalous). Threshold: empirical quantile of scores. """ X = ensure_dataframe(X) Xnum = numeric_only(X) if Xnum.shape[0] < n_components: return create_result(pd.Series(False, index=X.index), pd.Series(0.0, index=X.index), "gmm", {}, "too few samples") gmm = GaussianMixture(n_components=n_components) gmm.fit(Xnum) logprob = gmm.score_samples(Xnum) score = pd.Series(-logprob, index=Xnum.index) thr = score.quantile(1 - contamination) mask = score > thr return create_result(mask, score, {"n_components": n_components, "threshold": float(thr)}, "gmm", "GMM negative log-likelihood") def elliptic_envelope_method(X, contamination: float = 0.05) -> OutlierResult: """ EllipticEnvelope fits a robust covariance (assumes data come from a Gaussian-like ellipse). Flags outliers outside the ellipse. """ X = ensure_dataframe(X) Xnum = numeric_only(X) ee = EllipticEnvelope(contamination=contamination) ee.fit(Xnum) pred = ee.predict(Xnum) # decision_function: larger -> more normal; invert raw_score = -ee.decision_function(Xnum) score = pd.Series(raw_score, index=Xnum.index) mask = pd.Series(pred == -1, index=Xnum.index) return create_result(mask, score, "elliptic_envelope", {"contamination": contamination}, "EllipticEnvelope") # --------------------------- # File: outlier_detection/deep_learning.py # --------------------------- """ Deep learning based detectors (AutoEncoder, VAE). These require TensorFlow/Keras installed. If not present, importing this module will raise an informative ImportError. Design: a training function accepts X (numpy or DataFrame) and returns a callable `score_fn(X_new) -> pd.Series` plus a threshold selection helper. """ from typing import Callable import numpy as np import pandas as pd # lazy import to avoid hard TF dependency if user doesn't need it try: import tensorflow as tf from tensorflow.keras import layers, models, backend as K except Exception as e: raise ImportError("TensorFlow / Keras is required for deep_learning module. Install with `pip install tensorflow`. Error: " + str(e)) from .utils import ensure_dataframe, create_result def _build_autoencoder(input_dim: int, latent_dim: int = 8, hidden_units=(64, 32)) -> models.Model: inp = layers.Input(shape=(input_dim,)) x = inp for h in hidden_units: x = layers.Dense(h, activation='relu')(x) z = layers.Dense(latent_dim, activation='relu', name='latent')(x) x = z for h in reversed(hidden_units): x = layers.Dense(h, activation='relu')(x) out = layers.Dense(input_dim, activation='linear')(x) ae = models.Model(inp, out) return ae def autoencoder_method(X, latent_dim: int = 8, hidden_units=(128, 64), epochs: int = 50, batch_size: int = 32, validation_split: float = 0.1, threshold_method: str = 'quantile', threshold_val: float = 0.99, verbose: int = 0) -> OutlierResult: """ Train an AutoEncoder on X and compute reconstruction error as anomaly score. Parameters ---------- X : DataFrame or numpy array (numeric) threshold_method : 'quantile' or 'mean_std' threshold_val : if quantile -> e.g. 0.99 means top 1% flagged; if mean_std -> number of stds Returns ------- OutlierResult where score = reconstruction error and mask = score > threshold Notes ----- - This trains on the entire provided X. For actual anomaly detection, it's common to train the autoencoder only on "normal" data. If you have labels, pass only normal subset for training. - Requires careful scaling of inputs before training (robust_scale recommended). """ Xdf = ensure_dataframe(X) Xnum = Xdf.select_dtypes(include=['number']).fillna(0.0) input_dim = Xnum.shape[1] if input_dim == 0: return create_result(pd.Series(False, index=Xdf.index), pd.Series(0.0, index=Xdf.index), "autoencoder", {}, "no numeric columns") # convert to numpy arr = Xnum.values.astype(np.float32) ae = _build_autoencoder(input_dim=input_dim, latent_dim=latent_dim, hidden_units=hidden_units) ae.compile(optimizer='adam', loss='mse') ae.fit(arr, arr, epochs=epochs, batch_size=batch_size, validation_split=validation_split, verbose=verbose) recon = ae.predict(arr) errors = np.mean((arr - recon) ** 2, axis=1) score = pd.Series(errors, index=Xdf.index) if threshold_method == 'quantile': thr = float(score.quantile(threshold_val)) else: thr = float(score.mean() + threshold_val * score.std()) mask = score > thr return create_result(mask, score, "autoencoder", {"latent_dim": latent_dim, "threshold": thr}, "AutoEncoder reconstruction error") def vae_method(X, latent_dim: int = 8, hidden_units=(128, 64), epochs: int = 50, batch_size: int = 32, threshold_method: str = 'quantile', threshold_val: float = 0.99, verbose: int = 0) -> OutlierResult: """ Variational Autoencoder (VAE) anomaly detection. Implementation note: VAE is more involved; here we provide a simple implementation that uses reconstruction error as score. For strict probabilistic anomaly scoring one would use the ELBO / likelihood; this minimal implementation keeps it practical. """ # For brevity we reuse autoencoder path (a more complete VAE impl is possible) return autoencoder_method(X, latent_dim=latent_dim, hidden_units=hidden_units, epochs=epochs, batch_size=batch_size, threshold_method=threshold_method, threshold_val=threshold_val, verbose=verbose) # --------------------------- # File: outlier_detection/ensemble.py # --------------------------- """ Combine multiple detectors and produce an aggregated report. Provides strategies: union, intersection, majority voting, weighted sum of normalized scores. """ from typing import List, Dict import numpy as np import pandas as pd from .utils import ensure_dataframe, create_result def normalize_scores(scores: pd.DataFrame) -> pd.DataFrame: """Min-max normalize each score column to [0,1].""" sc = scores.copy() for c in sc.columns: col = sc[c] mn = col.min() mx = col.max() if mx == mn: sc[c] = 0.0 else: sc[c] = (col - mn) / (mx - mn) return sc def aggregate_scores(results: Dict[str, Dict], method: str = 'weighted', weights: Dict[str, float] = None) -> Dict: """ Aggregate multiple OutlierResult dictionaries produced by detectors. Returns an OutlierResult-like dict with: - mask (final boolean by threshold on aggregate score), - score (aggregate numeric score) Aggregation methods: - 'union' : any detector flagged => outlier (score = max of normalized scores) - 'intersection' : flagged by all detectors => outlier - 'majority' : flagged by >50% detectors - 'weighted' : weighted sum of normalized scores (weights provided or equal) """ # collect masks and scores into DataFrames masks = pd.DataFrame({k: v['mask'].astype(int) for k, v in results.items()}) raw_scores = pd.DataFrame({k: (v['score'] if isinstance(v['score'], pd.Series) else pd.Series(v['score'])) for k, v in results.items()}) raw_scores.index = masks.index norm_scores = normalize_scores(raw_scores) if method == 'union': agg_score = norm_scores.max(axis=1) elif method == 'intersection': agg_score = norm_scores.min(axis=1) elif method == 'majority': agg_score = masks.sum(axis=1) / max(1, masks.shape[1]) elif method == 'weighted': if weights is None: weights = {k: 1.0 for k in results.keys()} # align weights w = pd.Series({k: weights.get(k, 1.0) for k in results.keys()}) # make sure weights sum to 1 w = w / w.sum() agg_score = (norm_scores * w).sum(axis=1) else: raise ValueError("Unknown aggregation method") # default threshold: 0.5 mask = agg_score > 0.5 return create_result(mask, agg_score, f"ensemble_{method}", {"method": method}, "Aggregated ensemble score") def ensemble_methods(X, method_list: List[str] = None, method_params: Dict = None) -> Dict[str, Dict]: """ Convenience: run multiple detectors by name and return dict of results. method_list: list of names from ['iqr','modified_z','z_score','lof','mahalanobis','isolation_forest', ...] method_params: optional dict mapping method name to params """ from . import statistical, distance_density, model_based, deep_learning X = ensure_dataframe(X) if method_list is None: method_list = ['iqr', 'modified_z', 'isolation_forest', 'lof'] if method_params is None: method_params = {} results = {} for m in method_list: params = method_params.get(m, {}) try: if m == 'iqr': results[m] = statistical.iqr_method(X, **params) elif m == 'modified_z': results[m] = statistical.modified_z_score(X, **params) elif m == 'z_score': results[m] = statistical.z_score_method(X, **params) elif m == 'lof': results[m] = distance_density.lof_method(X, **params) elif m == 'mahalanobis': results[m] = distance_density.mahalanobis_method(X, **params) elif m == 'dbscan': results[m] = distance_density.dbscan_method(X, **params) elif m == 'knn': results[m] = distance_density.knn_distance_method(X, **params) elif m == 'isolation_forest': results[m] = model_based.isolation_forest_method(X, **params) elif m == 'one_class_svm': results[m] = model_based.one_class_svm_method(X, **params) elif m == 'pca': results[m] = model_based.pca_reconstruction_error(X, **params) elif m == 'gmm': results[m] = model_based.gmm_method(X, **params) elif m == 'elliptic': results[m] = model_based.elliptic_envelope_method(X, **params) elif m == 'autoencoder': results[m] = deep_learning.autoencoder_method(X, **params) else: logger.warning("Unknown method requested: %s", m) except Exception as e: logger.exception("Method %s failed: %s", m, e) return results # --------------------------- # File: outlier_detection/visualization.py # --------------------------- """ Simple plotting helpers for quick inspection. Note: plotting is intentionally minimal; for report-quality figures users can adapt styles. The functions return the matplotlib Figure object so they can be further customized. """ import matplotlib.pyplot as plt from .utils import ensure_dataframe def plot_boxplot(series: pd.Series, show: bool = True): df = ensure_dataframe(series) col = df.columns[0] fig, ax = plt.subplots() ax.boxplot(df[col].dropna()) ax.set_title(f"Boxplot: {col}") if show: plt.show() return fig def plot_pair_scatter(X, columns: list = None, show: bool = True): X = ensure_dataframe(X) if columns is not None: X = X[columns] cols = X.columns.tolist()[:4] # avoid huge plots fig, axes = plt.subplots(len(cols) - 1, len(cols) - 1, figsize=(4 * (len(cols) - 1), 4 * (len(cols) - 1))) for i in range(1, len(cols)): for j in range(i): ax = axes[i - 1, j] ax.scatter(X[cols[j]], X[cols[i]], s=8) ax.set_xlabel(cols[j]) ax.set_ylabel(cols[i]) fig.suptitle("Pairwise scatter (first 4 numeric cols)") if show: plt.show() return fig # --------------------------- # File: outlier_detection/cli.py # --------------------------- """ A very small CLI to run detectors on a CSV file and output a CSV report. Usage (example): python -m outlier_detection.cli detect input.csv output_report.csv --methods iqr,isolation_forest """ import argparse import pandas as pd from .ensemble import ensemble_methods, aggregate_scores def main(): parser = argparse.ArgumentParser(description='Outlier detection CLI') sub = parser.add_subparsers(dest='cmd') det = sub.add_parser('detect') det.add_argument('input_csv') det.add_argument('output_csv') det.add_argument('--methods', default='iqr,modified_z,isolation_forest,lof') args = parser.parse_args() df = pd.read_csv(args.input_csv) methods = args.methods.split(',') results = ensemble_methods(df, method_list=methods) agg = aggregate_scores(results, method='weighted') summary = pd.concat([pd.DataFrame({k: v['mask'].astype(int) for k, v in results.items()}), pd.DataFrame({k: v['score'] for k, v in results.items()})], axis=1) summary['ensemble_score'] = agg['score'] summary['ensemble_flag'] = agg['mask'].astype(int) summary.to_csv(args.output_csv, index=False) print(f"Wrote report to {args.output_csv}") if __name__ == '__main__': main()改成中文说明并返回代码给我
08-27
/etc /etc/systemd /etc/systemd/system /etc/systemd/system/haply-inverse-service.service /usr /usr/bin /usr/bin/00-haply-inverse-device-list /usr/bin/01-haply-inverse-print-inverse3 /usr/bin/02-haply-inverse-print-verse-grip /usr/bin/03-haply-inverse-print-wireless-verse-grip /usr/bin/04-haply-inverse-hello-floor /usr/bin/haply-inverse-service /usr/share /usr/share/doc /usr/share/doc/haply-inverse-service /usr/share/doc/haply-inverse-service/README /usr/share/doc/haply-inverse-service/copyright /usr/share/doc/haply-inverse-service/examples /usr/share/doc/haply-inverse-service/examples/tutorials /usr/share/doc/haply-inverse-service/examples/tutorials/00-haply-inverse-device-list /usr/share/doc/haply-inverse-service/examples/tutorials/00-haply-inverse-device-list/00-haply-inverse-device-list.cpp /usr/share/doc/haply-inverse-service/examples/tutorials/00-haply-inverse-device-list/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/00-haply-inverse-device-list/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/01-haply-inverse-print-inverse3 /usr/share/doc/haply-inverse-service/examples/tutorials/01-haply-inverse-print-inverse3/01-haply-inverse-print-inverse3.cpp /usr/share/doc/haply-inverse-service/examples/tutorials/01-haply-inverse-print-inverse3/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/01-haply-inverse-print-inverse3/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/02-haply-inverse-print-verse-grip /usr/share/doc/haply-inverse-service/examples/tutorials/02-haply-inverse-print-verse-grip/02-haply-inverse-print-verse-grip.cpp /usr/share/doc/haply-inverse-service/examples/tutorials/02-haply-inverse-print-verse-grip/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/02-haply-inverse-print-verse-grip/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/03-haply-inverse-print-wireless-verse-grip /usr/share/doc/haply-inverse-service/examples/tutorials/03-haply-inverse-print-wireless-verse-grip/03-haply-inverse-print-wireless-verse-grip.cpp /usr/share/doc/haply-inverse-service/examples/tutorials/03-haply-inverse-print-wireless-verse-grip/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/03-haply-inverse-print-wireless-verse-grip/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/04-haply-inverse-hello-floor /usr/share/doc/haply-inverse-service/examples/tutorials/04-haply-inverse-hello-floor/04-haply-inverse-hello-floor.cpp /usr/share/doc/haply-inverse-service/examples/tutorials/04-haply-inverse-hello-floor/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/04-haply-inverse-hello-floor/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/CMakeSettings.json /usr/share/doc/haply-inverse-service/examples/tutorials/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/external /usr/share/doc/haply-inverse-service/examples/tutorials/external/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/external/json /usr/share/doc/haply-inverse-service/examples/tutorials/external/json/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/external/json/LICENSE /usr/share/doc/haply-inverse-service/examples/tutorials/external/json/README.md /usr/share/doc/haply-inverse-service/examples/tutorials/external/libhv /usr/share/doc/haply-inverse-service/examples/tutorials/external/libhv.h /usr/share/doc/haply-inverse-service/examples/tutorials/external/libhv/CMakeLists.txt /usr/share/doc/haply-inverse-service/examples/tutorials/external/libhv/LICENSE /usr/share/doc/haply-inverse-service/examples/tutorials/external/libhv/README.md /usr/share/haply-inverse-service /usr/share/haply-inverse-service/assets /usr/share/haply-inverse-service/assets/audio /usr/share/haply-inverse-service/assets/audio/notification_test.wav /usr/share/haply-inverse-service/assets/dashboard /usr/share/haply-inverse-service/assets/dashboard/haply.png /usr/share/haply-inverse-service/assets/dashboard/index.html /usr/share/haply-inverse-service/assets/dashboard/style.css /usr/share/haply-inverse-service/assets/icons /usr/share/haply-inverse-service/assets/icons/haply.ico /usr/share/haply-inverse-service/assets/icons/haply.png /usr/share/haply-inverse-service/assets/icons/haply_on.ico /usr/share/haply-inverse-service/assets/icons/haply_on.png /usr/share/haply-inverse-service/assets/icons/haply_on_.ico
07-27
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值