DIF-Gaussian 代码讲解

这篇论文的标题是《Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction》,作者是Yiqun Lin, Hualiang Wang, Jixiang Chen和Xiaomeng Li,来自香港科技大学以及HKUST深圳-香港协同创新研究院。

这篇论文主要探讨了一种新的锥束计算机断层扫描(CBCT)重建框架,称为DIF-Gaussian,旨在通过使用更少的投影来减少辐射剂量,同时提高重建图像的质量。

给的代码只是个框架,强行复现花费时间而且以我水平容易误人子弟,就简单的对照论文理解一下,大家有兴趣可以一起讨论

项目地址:

GitHub - xmed-lab/DIF-Gaussian: MICCAI 2024: Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction

数据预处理地址
https://github.com/xmed-lab/C2RV-CBCT/tree/main/data

1、 下载代码和数据预处理方法,数据放到data中

2、发现代码是不完整的,因此边补充边写

train.py

使其与不同版本的DDP兼容

    if args.dist:
        args.local_rank = int(os.environ["LOCAL_RANK"]) # Make it compatible with different versions of DDP
        torch.distributed.init_process_group(backend="nccl")
        torch.cuda.set_device(args.local_rank)

加载cfg,项目只给出了一个default.yaml,复制一个改个名字

    cfg = load_config(args.cfg_path)
    if args.local_rank == 0:
        print(args)
        print(cfg)

        # save config
        save_dir = f'./logs/{args.name}'
        os.makedirs(save_dir, exist_ok=True)
        if os.path.exists(os.path.join(save_dir, 'config.yaml')):
            time_str = datetime.now().strftime('%d-%m-%Y_%H-%M-%S')
            shutil.copyfile(
                os.path.join(save_dir, 'config.yaml'), 
                os.path.join(save_dir, f'config_{time_str}.yaml')
            )
        shutil.copyfile(args.cfg_path, os.path.join(save_dir, 'config.yaml'))

初始化训练数据集/加载器

    train_dst = CBCT_dataset_gs(
        dst_name=args.dst_name,
        cfg=cfg.dataset,
        split='train', 
        num_views=args.num_views, 
        npoint=args.num_points,
        out_res_scale=args.out_res_scale,
        random_views=args.random_views
    )

关键在于并没有数据,因此还得自己想办法

dataset:
  root_dir: ../../datasets
  gs_res: 12 # the resolution of GS points (12^3 points in total)

进去看

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请站在我身后

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值