python笔记:3.2.2.1pandas数据操作_排序

博客展示了数据排序操作,如对索引排序,包括升序和降序。还介绍了使用嵌套字典创建DataFrame,以成绩表为例,展示了对DataFrame按索引、列顺序及特定列值进行排序的操作,涵盖升序和降序排列。
# -*- coding: utf-8 -*-
"""
Created on Thu May 23 14:28:08 2019

@author: User
"""

import pandas as pd

ssort=pd.Series(range(5), index=['a','b','c','d','e'])

print(ssort)

print('\n ssort.sort_index() :')
print(ssort.sort_index())

print('\n ssort.sort_index(ascending=False) :')
print(ssort.sort_index(ascending=False))

print('\n使用嵌套字典创建DataFram-------------------')
dfdata2={'Name':{101:'Zhang San',102:'Li Si',103:'Wang Wu',104:'Zhao Liu',105:'Qian Qi',106:'Sun Ba'},
        'Subject':{101:'Literature',102:'History',103:'English',104:'Maths',105:'Physics',106:'Chemics'},
        'Score':{101:98,102:76,103:84,104:70,105:93,106:83}
        }

scoresheet2=pd.DataFrame(dfdata2)

print("\n scoresheet2:")
print(scoresheet2)

print("\n scoresheet2.index=[102,101,106,104,103,105]:")
scoresheet2.index=[102,101,106,104,103,105]
print(scoresheet2)

print("\n scoresheet2.sort_index():")
print(scoresheet2.sort_index())

print("\n scoresheet2.sort_index(axis=0,ascending=False):")
print(scoresheet2.sort_index(axis=0,ascending=False))

print("\n 列顺序降序排列 scoresheet2.sort_index(axis=1,ascending=False):")
print(scoresheet2.sort_index(axis=1,ascending=False))

print("\n 列顺序降序排列 scoresheet2.sort_values(by='Score',ascending=False):")
print(scoresheet2.sort_values(by='Score',ascending=False))

运行:

a    0
b    1
c    2
d    3
e    4
dtype: int64

 ssort.sort_index() :
a    0
b    1
c    2
d    3
e    4
dtype: int64

 ssort.sort_index(ascending=False) :
e    4
d    3
c    2
b    1
a    0
dtype: int64

使用嵌套字典创建DataFram-------------------

 scoresheet2:
          Name     Subject  Score
101  Zhang San  Literature     98
102      Li Si     History     76
103    Wang Wu     English     84
104   Zhao Liu       Maths     70
105    Qian Qi     Physics     93
106     Sun Ba     Chemics     83

 scoresheet2.index=[102,101,106,104,103,105]:
          Name     Subject  Score
102  Zhang San  Literature     98
101      Li Si     History     76
106    Wang Wu     English     84
104   Zhao Liu       Maths     70
103    Qian Qi     Physics     93
105     Sun Ba     Chemics     83

 scoresheet2.sort_index():
          Name     Subject  Score
101      Li Si     History     76
102  Zhang San  Literature     98
103    Qian Qi     Physics     93
104   Zhao Liu       Maths     70
105     Sun Ba     Chemics     83
106    Wang Wu     English     84

 scoresheet2.sort_index(axis=0,ascending=False):
          Name     Subject  Score
106    Wang Wu     English     84
105     Sun Ba     Chemics     83
104   Zhao Liu       Maths     70
103    Qian Qi     Physics     93
102  Zhang San  Literature     98
101      Li Si     History     76

 列顺序降序排列 scoresheet2.sort_index(axis=1,ascending=False):
        Subject  Score       Name
102  Literature     98  Zhang San
101     History     76      Li Si
106     English     84    Wang Wu
104       Maths     70   Zhao Liu
103     Physics     93    Qian Qi
105     Chemics     83     Sun Ba

 列顺序降序排列 scoresheet2.sort_values(by='Score',ascending=False):
          Name     Subject  Score
102  Zhang San  Literature     98
103    Qian Qi     Physics     93
106    Wang Wu     English     84
105     Sun Ba     Chemics     83
101      Li Si     History     76
104   Zhao Liu       Maths     70
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值