https://vjudge.net/contest/422763#problem/A
原题复制粘贴
这里有一个关于合法的括号序列的问题。
如果插入“+”和“1”到一个括号序列,我们能得到一个正确的数学表达式,我们就认为这个括号序列是合法的。例如,序列"(())()", “()“和”(()(()))“是合法的,但是”)(”, "(()“和”(()))("是不合法的。我们这有一种仅由“(”,“)”和“?”组成的括号序列,你必须将“?”替换成括号,从而得到一个合法的括号序列。
对于每个“?”,将它替换成“(”和“)”的代价已经给出,在所有可能的变化中,你需要选择最小的代价。
思路
有一个很有意思的事情:那就是对于一个合法的括号序列,设有n个括号,那么前k个括号里面(k<n),左括号的数目肯定大于等于右括号的数目。
既然如此,我们不妨假设所有的问号都被填上右括号,然后一个一个读括号序列,一旦发现右括号总数大于左括号,就知道有一个右括号要被替换成左括号了。(其实有点像主元素问题)
至于该替换哪个,用优先队列解决。
下面看代码。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn=5e4+5;
char s[maxn];
int L[maxn],R[maxn];
priority_queue<int,vector<int>,less<int> >q;
int main()
{
scanf("%s",s);
long long value=0,i;
int n=strlen(s);
for(i=0;i<n;i++)
{
if(s[i]=='?')
{
scanf("%d%d",&L[i],&R[i]);
value+=R[i];///把所有的问号都假定为右括号
}
}
int flag=0,ok=1;
for(i=0;i<n;i++)
{
if(s[i]=='(') flag++;
else flag--;
if(s[i]=='?') q.push(R[i]-L[i]);///把右括号和左括号的差值推进去
if(flag<0)
{
if(q.empty())
{
ok=0;
break;
}
else
{
value-=q.top();
q.pop();
flag+=2;
}
}
}
if(flag!=0) ok=0;
if(!ok) printf("-1\n");
else
printf("%lld\n",value);
return 0;
}