量子计算入门与Go模拟

609af272d60d69f2a8a6297fa5ed2d76.jpeg请点击上方蓝字TonyBai订阅公众号!

4792a8a816f183609e74ed9709ee3ae8.png

2019年,Google宣布实现"量子霸权",声称其53量子比特的量子计算机完成了一个经典超级计算机需要1万年才能完成的计算任务。这一宣告在当时引发了广泛关注和热议。而在这个过程中,我们也看到了太多对量子计算的误解。有人将其想象成未来取代经典计算机的全能机器,认为它能以指数级速度解决所有计算问题;也有人认为量子计算只是一个遥不可及的科研概念,与实际应用毫无关联。

五年过去了,世界依然被经典计算机主宰,量子计算逐渐变成了“落魄网红”,淡出了公众视野。

如今,人们对量子计算机的印象似乎仅剩下那盏“豪华吊灯”:

21e2192a9e419797669a2cae3ab233c4.jpeg

量子计算机(图片来自网络)

作为领域局外人,我无法判断量子计算是否进入了技术成熟度曲线(Hype Cycle)的"泡沫破裂谷底期"。但现在的量子计算机在用途上与图形处理单元(GPU)很类似,都主要集中在特定领域的问题解决上,且在这些领域预期会展现出独特的优势

GPU主要设计用于图形渲染、图像处理等领域,后因其能够高效地处理并行计算任务,在机器学习模型训练和推理领域也取得了显著成功。类似地,量子计算机当前也专注于一些特定的应用领域,如量子模拟、优化问题和密码学等。它们在解决这些复杂问题时,理论上有可能实现远超经典计算机的性能。

但无论是GPU还是量子计算,目前看来都无法胜任经典计算机中通用处理器(CPU)所擅长的一般任务,这就决定了经典计算机势必仍将存在,并且是我们和GPU以及量子计算机彼此交流和互动的主要方式

从经典计算机的角度,GPU是其图形计算单元,经典计算机会将其擅长的任务分派到GPU上进行处理。按照这个思路,我们可以大胆地设想一种叫作QPU(Quantum Processing Unit)的量子处理单元,经典计算机会将量子计算擅长的计算任务分派到QPU上进行处理:

fef5328b86b6bce937ef25ae15bac95f.png

这样的计算机结构,对于程序员来说再熟悉不过了!

到这里,有人可能会问:那么大一个“豪华吊灯”,如何能变为一个小巧玲珑的QPU并放到我们常见的PC中呢?

回顾经典的通用计算机发展史,这种可能性还真的存在。你能想到80年前由冯·诺依曼主持设计的第一代存储程序的计算机(即冯·诺依曼机,现代计算机的原型)EDVAC(电子离散变量自动计算机,Electronic Discrete Variable Automatic Computer)有多大吗:

78c8eec1080e42cb83aac9d6ac8edc5a.png

经典计算机EDVAC(图片来自网络)

这个庞然大物的算力可能还不如现在你手腕上带的智能手表。随着物理学、材料科学等前沿学科的突破,“豪华大吊灯”变成一块板卡也不是没有可能。

与经典计算机的融合意味着如今的开发人员依然可以使用熟悉的人机交互界面与量子计算机打交道,包括量子计算的编程。但要针对量子计算机编程,需要了解量子计算的一般原理,就像基于英伟达的CUDA[1]进行GPU编程一样。

然而,目前的现实是量子计算机依然是“昂贵且稀缺的设备”,世界范围内只有巨头公司以及大型科研院所才拥有真实的量子计算机。但普通程序员仍然可以通过模拟器工具一窥其奥秘,理解其核心概念并为未来应用做好准备:

5c4d8cc99ba968d4d96c413abc8fb705.png

量子编程的层次结构

这些量子模拟器可以在经典计算机上模拟量子计算过程,让量子计算的学习和实验变得触手可及。在这篇文章中,我就和大家一起学习一下量子编程的基本概念和编程方法,并使用模拟器编写一些简单的量子计算程序。

1. 从经典计算到量子计算的认知跨越

要理解量子计算,我们需要先回顾经典计算的基本概念和抽象,然后建立起通向量子计算的认知桥梁。

1.1 经典计算机的基本抽象

在经典计算中,信息的基本单位是比特(bit),其值由两种电平状态来表示:

  • 低电平(0):通常表示为“0”或“低电压”,例如0伏特。

  • 高电平(1):通常表示为“1”或“高电压”,例如5伏特或3.3伏特。

即每个比特的值只能取0或1。这种电平的二元状态形成了数字电路的基础,使得计算机能够处理和存储信息。

比特的电平状态不仅用于计算,还用于信息的存储和传输。在存储器(如RAM)中,每个比特的位置对应于一个电平状态,通常通过电容或电感来保持电平。在数据传输中,信号的电平变化用于表示比特的流动,例如在串行或并行通信中。

1.1.1 比特与布尔逻辑

经典计算机使用比特进行所有信息处理。而布尔逻辑正是基于比特的逻辑运算,包括以下基本操作:

  • AND(与):仅当两个输入均为1时,输出才为1。

  • OR(或):只要有一个输入为1,输出即为1。

  • NOT(非):将输入的0变为1,1变为0。

这些基本逻辑门是构建更复杂运算的基础,所有复杂的计算都可以通过这些简单的逻辑操作组合而成。

1.1.2 门电路模型

门电路模型是经典计算的核心,利用逻辑门的连接来实现复杂的计算任务。电路由逻辑门(如与门、或门、非门等)构成,通过这些门的组合与连接,可以构建出加法器、乘法器等基本算术单元,以及更复杂的功能,比如处理器中的运算单元。门电路模型的优势在于其可组合性和可扩展性,使得计算机能够执行从简单到复杂的各种任务。

1.1.3 程序抽象

编程语言为程序员提供了更高级的抽象,使得比特操作不再需要直接进行,尤其是近半个世纪以来诞生的高级语言,如C/C++、Java、Go、Python等。通过这些高级编程语言,开发者可以使用更接近自然语言的语法来编写代码,底层的比特操作则由编译器或解释器自动处理。这种抽象不仅提高了编程效率,也使得程序员可以专注于算法和逻辑,而不必深入底层硬件细节。例如,C、Go、Python等编程语言提供了丰富的类型系统[2]、控制结构与高级数据结构,使得程序员可以用简单的语句来处理复杂的数据操作。随着技术的发展,面向对象编程、函数式编程[3]等新范式也相继出现,为软件开发提供了更灵活的方式。

以上对经典计算机的认知路径能够为理解量子计算机提供重要的基础和视角。接下来,我们就沿着这个路径认识一下量子计算的核心概念。

1.2 量子计算的核心概念

提及“量子”,人们首先想到的可能是大学物理中的量子力学。量子的概念来源于物理学,但和电子等真实存在的粒子不同,“量子”并不是指某个特定的粒子,而是一个广泛的基本概念,用来描述物质和能量在微观尺度上的离散性。在物理学中,量子具有以下主要特性:

  • 不确定性

海森堡的不确定性原理。该原理指出,某些物理量的精确值不能同时被完全确定,比如位置和动量。即使在理想情况下,测量一个量的精确性会导致对另一个量的测量不确定性增加。

  • 量子叠加态

在量子力学中,物体的状态被称为量子态。量子态可以通过波函数来描述,波函数包含了物体可能的所有状态的信息。此外,量子叠加原理允许一个量子系统同时处于多个状态。例如,电子可以同时占据多个能级,直到被测量时才“坍缩”到某个具体状态。(关于叠加态,后面详说)

  • 量子纠缠

量子纠缠是指两个或多个量子系统之间存在一种特殊的关联,使得对其中一个系统的测量会立即影响到另一个系统的状态,无论它们的距离有多远。量子纠缠是量子计算和量子通信的重要基础。

注:不要问我如何深入理解上述的特性,如果你对量子机制感兴趣,可以去读读费曼教授的物理学讲义[4],如果你能读懂的话:)。

而量子计算就是建构在量子的上述特性之上的。

1.2.1 量子比特(Qubit)

经典计算机中,信息和操作的基本单位是比特,在量子计算中,信息和操作的基本单位是**量子比特(qubit)。不过与经典比特的确定的二元状态(0或1)不同,量子比特处于叠加态(Superposition)**。

要理解量子计算,首当其冲的就是理解什么是量子比特的叠加态。

注意!注意!烧脑内容即将来袭

学习大学物理时,估计大家都接触过量子力学的皮毛,可能让你印象最深的就是“薛定谔的猫(Schrödinger’s Cat)”!

e49d66ab78b180a2421a989ddb24a0e5.jpeg

图来自网络

这是奥地利著名物理学家薛定谔提出的一个思想实验,是指将一只猫关在装有少量镭和氰化物的密闭容器里。镭的衰变存在几率,如果镭发生衰变,会触发机关打碎装有氰化物的瓶子,猫就会死;如果镭不发生衰变,猫就存活。根据量子力学理论,由于放射性的镭处于衰变和没有衰变两种状态的叠加,猫就理应处于死猫和活猫的叠加状态。这只既死又活的猫就是所谓的“薛定谔的猫”。

我们的量子比特就好比那只“薛定谔的猫”,只不过它的状态不是“死”和“活”的叠加态,而是0和1的叠加态。要知道“薛定谔的猫”的最终状态,需要观察者。而要知道一个量子比特的最终状态,需要对其进行**测量(measure)**。

这里有两个概念需要深入理解,一个是0和1的叠加态,另一个则是测量

经典计算机的比特的状态是确定性的,你设置为1,它就是1,你设置为0,它就是0。如果在其生命周期内,你不去修改它,它会一直保持其最初的状态。

但量子比特的状态却不是确定性的,而是概率性的,即量子比特是以概率的形式存在。不过要了解量子比特,我们需要先了解如何表示量子比特,就像我们在经典计算中用二进制数表示经典比特那样。

在量子计算领域,量子比特有两种表示法:狄拉克符号表示法(Dirac notation)和布洛克球(Bloch sphere)几何表示法,下面分别简单介绍一下。

1.2.2 狄拉克符号表示法

狄拉克符号是一种用于表示量子态的数学符号,也称为“凯特尔符号(ket notation)”,这个名称来源于单词“bracket”中的“bra”和“ket”。“Ket”指代右括号,用于量子态的表示,形式为|ψ⟩,其中ψ是量子态的名称或描述。而“Bra”是与“Ket”相对的符号,形式为⟨φ|,用于表示量子态的共轭转置。狄拉克符号的引入极大地方便了量子力学中的数学描述,使得量子态的表示更加简洁和直观。使用这些符号,物理学家可以轻松地进行状态的叠加、内积、外积等操作。

采用狄拉克符号的量子比特的通用状态,即叠加态的表示写法如下:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值