提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
加法器:
加法器是产生数的和的装置。加数和被加数为输入,和数与进位为输出的装置为半加器。若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。常用作计算机算术逻辑部件,执行逻辑操作、移位与指令调用。
一、Arithmetic Circuits
1. Half adder
Practice:Create a half adder. A half adder adds two bits (with no carry-in) and produces a sum and carry-out.
翻译:创建半加法器。半加法器将两个位相加(不带进项),产生一个总数和进位。
Solution(不唯一,仅供参考):
module top_module(
input a, b,
output cout, sum );
assign {
cout,sum} = a+b;
endmodule
2. Full adder
Practice:Create a full adder. A full adder adds three bits (including carry-in) and produces a sum and carry-out.
翻译:创建完整的加法器。一个完整的加法器加3位(包括进位),产生一个总数和进位。
Solution(不唯一,仅供参考):
module top_module(
input a, b, cin,
output cout, sum );
assign {
cout,sum} = a+b+cin;
endmodule
方法二
module top_module(
input a, b, cin,
output cout, sum );
assign cout = a&b | a&cin | b&cin;
assign sum = a^b^cin;
endmodule
Timing Diagram

3. 3-bit binary adder
Practice:Now that you know how to build a full adder, make 3 instances of it to create a 3-bit binary ripple-carry adder. The adder adds two 3-bit numbers and a carry-in to produce a 3-bit sum and carry out. To encourage you to actually instantiate full adders, also output the carry-out from each full adder in the ripple-carry adder. cout[2] is the final carry-out from the last full adder, and is the carry-out you usually see.
翻译:本题中需要通过实例化 3 个全加器,并将它们级联起来实现一个位宽为 3 bit 的二进制加法器。
Solution(不唯一,仅供参考):
module top_module(
input [2:0] a, b,
input cin,
output [2:0] cout,
output [2:0] sum );
add add0(.a(a[0]), .b(b[0]), .cin(cin), .cout(cout[0]), .sum(sum[0]));
add add1(.a(a

本文详细介绍了如何使用Verilog语言实现不同类型的加法器,包括半加器、全加器、3位、100位二进制加法器以及4位BCD加法器。此外,还涉及了带符号溢出的检测以及二进制加法器的级联。
最低0.47元/天 解锁文章
365

被折叠的 条评论
为什么被折叠?



