目录
ResNet原理
resNet诞生于2015年,是当年ImageNet竞赛的冠军,Top5的错误率为3.57%,ResNet提出了层间残差跳连,引入了前方信息,缓解了梯度消失使神经网络层数增加成为了可能。纵览前面博客讲过的四个卷积神经网络层数如下所示:
通过以上网络可以发现,人们在探索卷积实现特征提取的道路上,通过加深网络层数得到了越来越好的效果。
ResNet的作者何凯明在cifar10数据集上做了个实验,他发现,56层卷积网络的错误率 ,要高于20层卷积网络的错误率。他认为单纯堆叠神经网络层数会使神经网络模型退化,以至于后面的特征丢失了前面的特征的原本模样,于是他用一个跳连线,将前面的特征值直接接到了后边,使输出结果H(x)包含了堆叠卷积的非线性输出F(x)和跳过这两层堆叠卷积直接连接过来的恒等映射x,让他们对应元素相加,这一操作有效缓解了神经网络的模型堆叠导致的退化,使得神经网络可以向着更深层级发展。如下图所示:
ResNet块中有两种情况,一种情况是用图中的实线表示,这种情况两层堆叠卷积,没有改变特征图的维度,也就是它们特征图的个数、高、宽和深度都相同,可直接将F(x)与x相加。,另一种情况用图中的虚线表示,这种情况中这两层堆叠的卷积改变了特征图的维度,需要借助1*1的卷积来调整x的维度,使得w(x)与F(x)的维度一致。(1*1卷积操作可以通过步长改变特征图尺寸,通过卷积核个数改变特征图深度),如下图所示:
ResNet块有两种形式,一种在堆叠卷积前后维度相同,另一种在堆叠卷积前后维度不同,我们可以把ResNet块的两种结构封装到一个橙色块中,写出ResNetBlock类,每调用一次ResNetBlock类会生成一个黄色块,如果堆叠卷积层前后维度不同,设置residual_path等于1,调用红色块代码,使用1*1卷积操作,调整输入特征图inputs的尺寸或者深度后将堆叠卷积输出特征y,和if语句计算出的residual相加过激活然后输出;如果堆叠卷积层前后维度相同不执行红色块内代码,直接将堆叠卷积输出特征y和输入特征图inputs相加。过激活然后输出。
完整的ResNet模型结构如下所示:
ResNet实战程序
import keras.layers
import numpy as np
import tensorflow as tf
import os
from matplotlib import pyplot as plt
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense,GlobalAveragePooling2D
from tensorflow.keras import Model
dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path
np.set_printoptions(threshold=np.inf) # 设置打印出所有参数,不要省略
mnist = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 由于fashion数据集是三维的(60000, 28, 28),而cifar10 数据集是四维的,而此网络是用来识别四维的数据所所以需要将3维的输入扩展维4维的输入
x_train = np.expand_dims(x_train, axis=3)
x_test = np.expand_dims(x_test, axis=3)
class ResnetBlock(Model):
def __init__(self, filters, strides=1, residual_path=False):
super(ResnetBlock, self).__init__()
self.filters = filters
self.strides = strides
self.residual_path = residual_path
self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False)
self.b1 = BatchNormalization()
self.a1 = Activation('relu')
self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False)
self.b2 = BatchNormalization()
# residual_path为True时,对输入进行下采样,即采用1*1的卷积核做卷积操作,保证x能和F(x)维度相同,顺利x相加
if residual_path:
self.down_c1 = Conv2D(filters, (1, 1), strides=strides, padding='same', use_bias=False)
self.down_b1 = BatchNormalization()
self.a2 = Activation('relu')
def call(self, inputs):
residual = inputs # residual等于输入值本身即redidual
# 将输入通过卷积、BN层、激活层计算F(x)
x = self.c1(inputs)
x = self.b1(x)
x = self.a1(x)
x = self.c2(x)
y = self.b2(x)
if self.residual_path:
residual = self.down_c1(inputs)
residual = self.down_b1(residual)
out = self.a2(y + residual) # 最后输出的是两部分的和,即F(x)+x或者F(x)+w(x)再过激活函数
return out
class ResNet18(Model):
def __init__(self, block_list, initial_filters=64): # block_list表示每个block有几个卷积层
super(ResNet18, self).__init__()
self.num_blocks = len(block_list) # 共有几个block
self.block_list = block_list
self.out_filters = initial_filters
self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False)
self.b1 = BatchNormalization()
self.a1 = Activation('relu')
self.blocks = tf.keras.models.Sequential()
# 构建ResNet网络结构
for block_id in range(len(block_list)): # 第几个resnet block
for layer_id in range(block_list[block_id]): # 第几个卷积层
if block_id != 0 and layer_id == 0: # 对出第一个block以外的每个block的输入进行下采样
block = ResnetBlock(self.out_filters, strides=2, residual_path=True)
else:
block = ResnetBlock(self.out_filters, residual_path=False)
self.blocks.add(block) # 将构建好的block加入resnet
self.out_filters *= 2 # 下一个block的卷积核数是上一个block的2倍
self.p1 = tf.keras.layers.GlobalAveragePooling2D()
self.f1 = tf.keras.layers.Dense(10, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
def call(self, inputs):
x = self.c1(inputs)
x = self.b1(x)
x = self.a1(x)
x = self.blocks(x)
x = self.p1(x)
y = self.f1(x)
return y
model = ResNet18([2, 2, 2, 2])
model.compile(optimizer='adam',
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = './checkpoint/mnist.ckpt'
if os.path.exists(checkpoint_save_path + '.index'):
print('------------------------load the model---------------------')
model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
history = model.fit(x_train, y_train, batch_size=8, epochs=5,
validation_data=(x_test, y_test),
validation_freq=1,
callbacks=[cp_callback])
model.summary()
print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
file.write(str(v.name) + '\n')
file.write(str(v.shape) + '\n')
file.write(str(v.numpy()) + '\n')
file.close()
############################ show #############################
# 显示训练集和验证集的acc和loss曲线
acc=history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
各个网络的区别: