15、最优控制中的动态规划与最大值原理

最优控制中的动态规划与最大值原理

在控制理论中,动态规划和最大值原理是解决最优控制问题的重要方法。下面将详细介绍脉冲控制的动态规划以及最大值原理在不同控制问题中的应用。

1. 脉冲控制的动态规划

对于脉冲控制问题,存在一个最优策略 $\hat{\pi}$,使得价值函数 $\hat{v}(x)$ 满足:
$\hat{v}(x) = \int_{0}^{+\infty} e^{-\alpha s} g(z_x(s)) ds = J(\hat{\pi}, x)$
若 $\hat{t} 1 < \hat{t}_2 < \cdots < \hat{t}_m < \hat{t} {m + 1} = +\infty$,且 $z_{\hat{w} m}(t) \notin \hat{K}$ 对所有 $t \geq 0$ 成立,则有:
$\hat{v}(\hat{w}_m) = \int
{0}^{+\infty} e^{-\alpha s} g(z_{\hat{w} m}(s)) ds$
通过恒等式 (11.17) 可得:
$\hat{v}(x) = \int
{0}^{\hat{t} m} e^{-\alpha s} g(y {\hat{\pi}, x}(s)) ds + \sum_{i = 0}^{m} e^{-\alpha \hat{t} i} c(\hat{x}_i, \hat{w}_i) + e^{-\alpha \hat{t}_m} \int {0}^{+\infty} e^{-\alpha s} g(z_{\hat{w}

使用雅可比椭圆函数为Reissner平面有限应变梁提供封闭形式解(Matlab代码实现)内容概要:本文介绍了如何使用雅可比椭圆函数为Reissner平面有限应变梁问题提供封闭形式的解析解,并结合Matlab代码实现该求解过程。该方法能够精确描述梁在大变形条件下的非线性力学行为,适用于几何非线性强、传统线性理论失效的工程场景。文中详细阐述了数学建模过程,包括基本假设、控制方程推导以及利用雅可比椭圆函数进行积分求解的技术路线,最后通过Matlab编程验证了解的准确性有效性。; 适合人群:具备一定固体力学、非线性结构分析基础,熟悉Matlab编程的研究生、博士生及科研人员,尤其适合从事结构力学、航空航天、土木工程等领域中大变形问题研究的专业人士; 使用场景及目标:① 掌握Reissner梁理论在有限应变条件下的数学建模方法;② 学习雅可比椭圆函数在非线性微分方程求解中的实际应用技巧;③ 借助Matlab实现复杂力学问题的符号计算数值验证,提升理论仿真结合能力; 阅读建议:建议读者在学习前复习弹性力学非线性梁理论基础知识,重点关注控制方程的推导逻辑边界条件的处理方式,同时动手运行并调试所提供的Matlab代码,深入理解椭圆函数库的调用方法结果可视化流程,以达到理论实践深度融合的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值