机器学习基础算法与时间序列预测全解析
1. 广义线性模型(Generalized Linear Model)
广义线性模型(GLM)的回归结果展示了其在数据分析中的应用。以下是一个GLM回归结果的示例:
| Dep. Variable | y | No. Observations | 9 |
| — | — | — | — |
| Model | GLM | Df Residuals | 7 |
| Model Family | Gaussian | Df Model | 1 |
| Link Function | identity | Scale | 5.3627 |
| Method | IRLS | Log - Likelihood | -19.197 |
| Date | Sat, 09 Feb 2019 | Deviance | 37.539 |
| Time | 10:01:22 | Pearson chi2 | 37.5 |
| No. Iterations | 3 | Covariance Type | nonrobust |
系数详情如下:
| | coef | std err | z | P>|z| | [0.025 | 0.975] |
| — | — | — | — | — | — | — |
| x1 | 5.0167 | 0.299 | 16.780 | 0.000 | 4.431 | 5.603 |
| const | 49.6778 | 1.953 | 25.439 | 0.000 | 45.850 | 53.505 |