26、时间抽象双相似性下的模拟关系

时间抽象双相似性下的模拟关系

1. 引言

时间抽象双相似性(time abstract bisimilarity)是用于分析和比较不同系统行为的一种重要工具。它允许我们忽略某些时间细节,专注于系统行为的核心特征。本文将深入探讨时间抽象双相似性及其在不同模型之间的模拟关系。我们将从定义和性质入手,逐步深入到具体的应用场景和技术细节,帮助读者全面理解这一概念。

2. 定义和性质

时间抽象双相似性是一种用于比较两个系统行为的方法,它通过忽略具体的时间细节来捕捉系统行为的本质特征。为了更好地理解这个概念,我们需要先了解一些基本定义和性质。

2.1 基本定义

时间抽象双相似性(time abstract bisimilarity)是指两个系统 ( S_1 ) 和 ( S_2 ) 在时间抽象层面上的行为是相同的。具体来说,如果 ( S_1 ) 和 ( S_2 ) 在时间抽象层面上的行为一致,则称它们是时间抽象双相似的。

定义如下:
设 ( S_1 = (Q_1, Q_{01}, \Delta_1, F_1, R_1) ) 和 ( S_2 = (Q_2, Q_{02}, \Delta_2, F_2, R_2) ) 是两个时序转换系统(TTS)。如果存在一个二元关系 ( \sim ) 满足以下条件,则称 ( S_1 ) 和 ( S_2 ) 是时间抽象双相似的:

  • 对于任意 ( q_1 \in Q_1 ) 和 ( q_2 \in Q_2 ),如果 ( q_1 \sim q_2 ),则对于任意 ( q_1’ \in Q_1 ),如果 ( q_1 \Delta_1 q_1’ ),则存在 ( q
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值