题意:
给你n 个数,有q 个操作,操作1,使得L到R的区间的a全变成x,b 加上|x-a|。 操作2查询L到R上的b 总和。
思路:
分块乱搞就好了。
我们用flag[i]表示i 这个分块是否是一样的。
当前分块如果是完整的话,如果是一样的话,直接更新到答案里,不是的话就暴力一遍。
如果不完整的话,在讨论是不是一样的。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e5+10;
LL a[maxn],b[maxn];
int belong[maxn];
int L[maxn], R[maxn];
int block;
int num;
LL sum[maxn];
int n, q;
LL flag[maxn], flag2[maxn];
void init(){
for (int i = 1; i <= n; ++i) a[i] = i;
int num = sqrt(n);
block = n / num;
if (n % block) ++num;
for (int i = 1; i <= num ;++i){
L[i] = (i-1)*block + 1;
R[i] = i*block;
}
R[n] = num;
for (int i = 1 ; i <= n; ++i){
belong[i] = (i-1)/block+1;
}
}
LL aaa(LL x){
if (x < 0) return -x;
return x;
}
void update(int l,int r,int x){
for (int i = l; i <= r;){
int id = belong[i];
if (i == L[id] && r >= R[id]){
if (flag[id]){
sum[id] += (LL)(R[id]-L[id]+1) * aaa(x-flag[id]);
flag2[id] += aaa(x-flag[id]);
flag[id] = x;
}
else {
flag[id] = x;
for (int j = L[id]; j <= R[id]; ++j){
sum[id] += aaa(a[j] - x);
b[j] += aaa(a[j] - x);
a[j] = x;
}
}
i = R[id]+1;
}
else {
if (flag[id]){
for (int j = L[id]; j <= R[id]; ++j)a[j] = flag[id];
flag[id] = 0;
}
sum[id] += aaa(a[i]-x);
b[i] += aaa(a[i]-x);
a[i] = x;
++i;
}
}
}
LL query(int l,int r){
LL ans = 0LL;
for (int i = l; i <= r; ){
int id = belong[i];
if (i == L[id] && r >= R[id]){
ans += sum[id];
i = R[id]+1;
}
else {
ans += b[i] + flag2[id];
++i;
}
}
return ans;
}
int main(){
scanf("%d %d",&n, &q);
init();
int op;
while(q--){
scanf("%d",&op);
if (op == 1){
int l,r,v;
scanf("%d %d %d",&l, &r, &v);
update(l,r,v);
}
else {
int l,r;
scanf("%d %d",&l, &r);
printf("%lld\n",query(l,r));
}
}
return 0;
}
DZY loves colors, and he enjoys painting.
On a colorful day, DZY gets a colorful ribbon, which consists of n units (they are numbered from 1 to n from left to right). The color of the i-th unit of the ribbon is i at first. It is colorful enough, but we still consider that the colorfulness of each unit is 0 at first.
DZY loves painting, we know. He takes up a paintbrush with color x and uses it to draw a line on the ribbon. In such a case some contiguous units are painted. Imagine that the color of unit i currently is y. When it is painted by this paintbrush, the color of the unit becomes x, and the colorfulness of the unit increases by |x - y|.
DZY wants to perform m operations, each operation can be one of the following:
- Paint all the units with numbers between l and r (both inclusive) with color x.
- Ask the sum of colorfulness of the units between l and r (both inclusive).
Can you help DZY?
The first line contains two space-separated integers n, m (1 ≤ n, m ≤ 105).
Each of the next m lines begins with a integer type (1 ≤ type ≤ 2), which represents the type of this operation.
If type = 1, there will be 3 more integers l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 108) in this line, describing an operation 1.
If type = 2, there will be 2 more integers l, r (1 ≤ l ≤ r ≤ n) in this line, describing an operation 2.
For each operation 2, print a line containing the answer — sum of colorfulness.
3 3 1 1 2 4 1 2 3 5 2 1 3
8
3 4 1 1 3 4 2 1 1 2 2 2 2 3 3
3 2 1
10 6 1 1 5 3 1 2 7 9 1 10 10 11 1 3 8 12 1 1 10 3 2 1 10
129
In the first sample, the color of each unit is initially [1, 2, 3], and the colorfulness is [0, 0, 0].
After the first operation, colors become [4, 4, 3], colorfulness become [3, 2, 0].
After the second operation, colors become [4, 5, 5], colorfulness become [3, 3, 2].
So the answer to the only operation of type 2 is 8.