Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 210088 Accepted Submission(s): 49285
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6 大体题意: 给你n 个元素的数组,求出一个连续子序列 使得子序列的和最大,并且输出 子序列的起始位置和终止位置! 思路: 直接遍历数组,thissum += a[i],当比maxsum 大时,更新maxsum 并且更新左位置和右位置 如果thissum < 0肯定不能作为起点,也不是最优的直接把thissum初始化为0,然后更新左位置!#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn = 100000 + 10; int a[maxn]; int l,r,n,k; int solve(){ l = r = k = 1; int maxsum = -maxn,thissum = 0; for (int i = 1; i <= n; ++i){ thissum += a[i]; if (thissum > maxsum)maxsum = thissum,r=i,l=k; if (thissum < 0)thissum = 0,k=i+1; } return maxsum; } int main(){ int T,cnt=0; scanf("%d",&T); while(T--){ scanf("%d",&n); for (int i = 1; i <= n; ++i){ scanf("%d",&a[i]); } int ans = solve(); if (cnt)printf("\n"); printf("Case %d:\n",++cnt); printf("%d %d %d\n",ans,l,r); } return 0; }