Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Given the following triangle:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Solution 1. Recursion.
For a given point at the bottom f(i, n - 1) = triangle[i][n - 1] + Math,min(f(i - 1, n - 2), f(i, n - 2));
This recursive formula provides a straightforward solution.
Solution 2. Top Down Dynamic Programming
1 public class Solution { 2 public int minimumTotal(int[][] triangle) { 3 // write your code here 4 if(triangle == null || triangle.length == 0){ 5 return Integer.MAX_VALUE; 6 } 7 int row = triangle.length; 8 int[][] f = new int[row][]; 9 for(int i = 0; i < row; i++){ 10 f[i] = new int[triangle[i].length]; 11 } 12 13 f[0][0] = triangle[0][0]; 14 for(int i = 1; i < row; i++){ 15 f[i][0] = f[i - 1][0] + triangle[i][0]; 16 f[i][i] = f[i - 1][i - 1] + triangle[i][i]; 17 } 18 19 for(int i = 1; i < row; i++){ 20 for(int j = 1; j < i; j++){ 21 f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j]; 22 } 23 } 24 25 int min = Integer.MAX_VALUE; 26 for(int i = 0; i < row; i++){ 27 if(f[row - 1][i] < min){ 28 min = f[row - 1][i]; 29 } 30 } 31 return min; 32 } 33 }
Solution 3. Bottom Up Dynamic Programming with space optimization,
1 public class Solution { 2 public int minimumTotal(int[][] triangle) { 3 if(triangle == null || triangle.length == 0){ 4 return 0; 5 } 6 int n = triangle.length; 7 int[] path = new int[n]; 8 9 for(int i = 0; i < n; i++){ 10 path[i] = triangle[n - 1][i]; 11 } 12 13 for(int i = n - 2; i >= 0; i--){ 14 for(int j = 0; j <= i; j++){ 15 path[j] = Math.min(path[j], path[j + 1]) + triangle[i][j]; 16 } 17 } 18 return path[0]; 19 } 20 }
Related Problems
Minimum Path Sum
本文介绍了一种寻找从三角形顶部到底部的最小路径和的算法,通过递归、自顶向下动态规划及自底向上动态规划三种方法实现,并提供了具体的Java代码实现。
1162

被折叠的 条评论
为什么被折叠?



