ORBSLAM3双目匹配增加左相机索引

本文介绍了一种基于ORB特征的立体视觉匹配算法实现细节。通过构建关键点行表并结合ORB匹配器来寻找左右图像间最佳匹配点。进一步采用亚像素级相关性匹配提升精度,并通过距离阈值剔除误匹配。
void Frame::ComputeStereoMatches()
{
    mvuRight = vector<float>(N,-1.0f);
    mvuLeft = vector<float>(N,-1.0f);
    mvDepth = vector<float>(N,-1.0f);

    const int thOrbDist = (ORBmatcher::TH_HIGH+ORBmatcher::TH_LOW)/2;

    const int nRows = mpORBextractorLeft->mvImagePyramid[0].rows;

    //Assign keypoints to row table
    vector<vector<size_t> > vRowIndices(nRows,vector<size_t>());

    for(int i=0; i<nRows; i++)
        vRowIndices[i].reserve(200);

    const int Nr = mvKeysRight.size();

    for(int iR=0; iR<Nr; iR++)
    {
        const cv::KeyPoint &kp = mvKeysRight[iR];
        const float &kpY = kp.pt.y;
        const float r = 2.0f*mvScaleFactors[mvKeysRight[iR].octave];
        const int maxr = ceil(kpY+r);
        const int minr = floor(kpY-r);

        for(int yi=minr;yi<=maxr;yi++)
            vRowIndices[yi].push_back(iR);
    }

    // Set limits for search
    const float minZ = mb;
    const float minD = 0;
    const float maxD = mbf/minZ;

    // For each left keypoint search a match in the right image
    vector<pair<int, int> > vDistIdx;
    vDistIdx.reserve(N);

    int matchedLeftnums=0;
    for(int iL=0; iL<N; iL++)
    {

        const cv::KeyPoint &kpL = mvKeys[iL];
        const int &levelL = kpL.octave;
        const float &vL = kpL.pt.y;
        const float &uL = kpL.pt.x;

        const vector<size_t> &vCandidates = vRowIndices[vL];

        if(vCandidates.empty())
            continue;

        const float minU = uL-maxD;
        const float maxU = uL-minD;

        if(maxU<0)
            continue;

        int bestDist = ORBmatcher::TH_HIGH;
        size_t bestIdxR = 0;

        const cv::Mat &dL = mDescriptors.row(iL);

        // Compare descriptor to right keypoints
        for(size_t iC=0; iC<vCandidates.size(); iC++)
        {
            const size_t iR = vCandidates[iC];
            const cv::KeyPoint &kpR = mvKeysRight[iR];

            if(kpR.octave<levelL-1 || kpR.octave>levelL+1)
                continue;

            const float &uR = kpR.pt.x;

            if(uR>=minU && uR<=maxU)
            {
                const cv::Mat &dR = mDescriptorsRight.row(iR);
                const int dist = ORBmatcher::DescriptorDistance(dL,dR);

                if(dist<bestDist)
                {
                    bestDist = dist;
                    bestIdxR = iR;
                }
            }
        }

        // Subpixel match by correlation
        if(bestDist<thOrbDist)
        {
            // coordinates in image pyramid at keypoint scale
            const float uR0 = mvKeysRight[bestIdxR].pt.x;
            const float scaleFactor = mvInvScaleFactors[kpL.octave];
            const float scaleduL = round(kpL.pt.x*scaleFactor);
            const float scaledvL = round(kpL.pt.y*scaleFactor);
            const float scaleduR0 = round(uR0*scaleFactor);

            // sliding window search
            const int w = 5;
            cv::Mat IL = mpORBextractorLeft->mvImagePyramid[kpL.octave].rowRange(scaledvL-w,scaledvL+w+1).colRange(scaleduL-w,scaleduL+w+1);
            //IL.convertTo(IL,CV_32F);
            //IL = IL - IL.at<float>(w,w) *cv::Mat::ones(IL.rows,IL.cols,CV_32F);
            IL.convertTo(IL,CV_16S);
            IL = IL - IL.at<short>(w,w);

            int bestDist = INT_MAX;
            int bestincR = 0;
            const int L = 5;
            vector<float> vDists;
            vDists.resize(2*L+1);

            const float iniu = scaleduR0+L-w;
            const float endu = scaleduR0+L+w+1;
            if(iniu<0 || endu >= mpORBextractorRight->mvImagePyramid[kpL.octave].cols)
                continue;

            for(int incR=-L; incR<=+L; incR++)
            {
                cv::Mat IR = mpORBextractorRight->mvImagePyramid[kpL.octave].rowRange(scaledvL-w,scaledvL+w+1).colRange(scaleduR0+incR-w,scaleduR0+incR+w+1);
                //IR.convertTo(IR,CV_32F);
                //IR = IR - IR.at<float>(w,w) *cv::Mat::ones(IR.rows,IR.cols,CV_32F);
                IR.convertTo(IR,CV_16S);
                IR = IR - IR.at<short>(w,w);

                float dist = cv::norm(IL,IR,cv::NORM_L1);
                if(dist<bestDist)
                {
                    bestDist =  dist;
                    bestincR = incR;
                }

                vDists[L+incR] = dist;
            }

            if(bestincR==-L || bestincR==L)
                continue;

            // Sub-pixel match (Parabola fitting)
            const float dist1 = vDists[L+bestincR-1];
            const float dist2 = vDists[L+bestincR];
            const float dist3 = vDists[L+bestincR+1];

            const float deltaR = (dist1-dist3)/(2.0f*(dist1+dist3-2.0f*dist2));

            if(deltaR<-1 || deltaR>1)
                continue;

            // Re-scaled coordinate
            float bestuR = mvScaleFactors[kpL.octave]*((float)scaleduR0+(float)bestincR+deltaR);

            float disparity = (uL-bestuR);

            if(disparity>=minD && disparity<maxD)
            {
                if(disparity<=0)
                {
                    disparity=0.01;
                    bestuR = uL-0.01;
                }
                mvDepth[iL]=mbf/disparity;
                mvuRight[iL] = bestuR;
                vDistIdx.push_back(pair<int,int>(bestDist,iL));
                mvuLeft[iL]=iL;
                matchedLeftnums++;
            }
        }
    }



    sort(vDistIdx.begin(),vDistIdx.end());
    const float median = vDistIdx[vDistIdx.size()/2].first;
    const float thDist = 1.5f*1.4f*median;

    for(int i=vDistIdx.size()-1;i>=0;i--)
    {
        if(vDistIdx[i].first<thDist)
        {

            //cout << vDistIdx[i].second ;

            break;
        }
        else
        {
            matchedLeftnums--;
            mvuRight[vDistIdx[i].second]=-1;
            mvDepth[vDistIdx[i].second]=-1;
            mvuLeft[vDistIdx[i].second]=-1;//删除左图离缺点,标志为-1
        }
    }
    cout << endl;
    cout <<"matchedLeftnums= "<< matchedLeftnums << endl;
    //PrintmvuRight(mvuRight); //打印右图索引值,右图匹配的特征点数
    //PrintmvuLeft(mvuLeft);    //打印左图索引值,这个索引对应有图特征点的序号
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值