自动泊车端到端算法 ParkingE2E 介绍

01 算法介绍

自主泊车是智能驾驶领域中的一项关键任务。传统的泊车算法通常使用基于规则的方案来实现。因为算法设计复杂,这些方法在复杂泊车场景中的有效性较低。

相比之下,基于神经网络的方法往往比基于规则的方法更加直观和多功能。通过收集大量专家泊车轨迹数据,基于学习的仿人策略方法,可以有效解决泊车任务。

在本文中,我们采用模仿学习来执行从 RGB 图像到路径规划的端到端规划,模仿人类驾驶轨迹。我们提出的端到端方法利用目标查询编码器来融合图像和目标特征,并使用基于 Transformer 的解码器自回归预测未来的航点。

我们在真实世界场景中进行了广泛的实验,结果表明,我们提出的方法在四个不同的真实车库中平均泊车成功率达到了 87.8%。实车实验进一步验证了本文提出方法的可行性和有效性。

输入:1.去完畸变的 RGB 图 2.目标停车位

输出:路径规划

图片

论文精读博客参考链接:https://blog.youkuaiyun.com/qq_45933056/article/details/140968352

源代码:https://github.com/qintonguav/ParkingE2E

02 算法部署后的 demo 效果展示

图片

图片

03 实现过程

3.1 算法整体架构

图片

多视角 RGB 图像被处理,图像特征被转换为 BEV(鸟瞰图)表示形式。使用目标停车位生成 BEV 目标特征,通过目标查询将目标特征和图像 BEV 特征融合,然后使用自回归的 Tr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值