社会理性秘密共享:原理、机制与优势
1. 基础概念引入
在秘密共享的领域中,有几个关键概念是理解后续内容的基础。首先是玩家的期望效用,用 $u_i(\sigma)$ 表示玩家 $P_i$ 在策略向量 $\sigma$ 下的期望效用,玩家的目标就是最大化这个期望效用。这里的策略向量和行动之间可以相互替换,即一个行动 $a_i \in A_i$ 可以用其概率分布 $\sigma_i \in S_i$ 来表示,反之亦然。
接下来是两个重要的定义:
- 纳什均衡 :策略向量 $\sigma$ 是纳什均衡,意味着对于所有的 $i$ 和任何 $\sigma’ i \neq \sigma_i$,都有 $u_i(\sigma’_i, \sigma {-i}) \leq u_i(\sigma)$。简单来说,只要其他玩家遵循协议,任何玩家偏离协议都不会获得优势。
- 弱占优策略 :策略 $\sigma_i \in S_i$(或行动)相对于 $S_{-i}$ 被另一个策略 $\sigma’ i \in S_i$(或行动)弱占优,需要满足两个条件:一是对于所有的 $\sigma {-i} \in S_{-i}$,都有 $u_i(\sigma_i, \sigma_{-i}) \leq u_i(\sigma’ i, \sigma {-i})$;二是存在一个 $\sigma_{-i} \in S_{-i}$,使得 $u_i(\sigma_i, \sigma_{-i}) < u_i(\sigma’ i, \sigma {-i})$。这表明玩家
超级会员免费看
订阅专栏 解锁全文
805

被折叠的 条评论
为什么被折叠?



