目录
一、车牌识别背景介绍
随着经济社会的迅猛发展,人们的生活水平的提高,机动车辆的数量也越来越多。为了提高车辆的管理效率,缓解公路上的交通压力,我们必须找到一种解决方案。而作为汽车“身份证”的汽车车牌,是在公众场合能够唯一确定汽车身份的凭证。我们可以以此为依据,设计一种车牌识别系统监控各个车辆的情况。
传统的车牌识别需要先检测出车牌,检测出车牌后通过“像素映射”或者“联通区查找”的方法分割出单个的文字,然后基于模板匹配的方法单独识别每个文字。而一旦车牌上有物体遮挡到了文字的一部分,基于模板匹配的方法则完全不能识别出该数字或文字到底是什么。因此,传统的车牌识别方法不但存在步骤繁琐的弊端,而且对环境和车牌的可视度具有极高的要求。
二、基于CNN的车牌识别
2.1 CNN的特点
由于卷积神经网络(CNN)在图像处理中所表现出的得天独厚的优势,使其在生活、工业和军事等领域都表现出不可替代的作用。有学者归纳出了可以用CNN解决的问题所具备的三个性质:

最低0.47元/天 解锁文章
4765

被折叠的 条评论
为什么被折叠?



