题目大意
一棵树有n个节点,每个节点有一个年龄值
有q个询问,询问点
本题强制在线。
1≤n≤1.5×105,1≤q≤2×105,ai≤109
题目分析
这题乍一看点分治加上权值线段树。就是预处理每个中心,按年龄值为下标建权值线段树,然后查询时沿着重心树跳即可。
其实可以不需要权值线段树(其实貌似会MLE)。我们可以直接将将点到重心距离按照年龄值排序,然后二分查找区间即可。还要减去算重的部分。有点像[GDSOI2015]小Z的旅行路线的在线树分治做法。
时间复杂度O(nlog22n)。
代码实现
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cctype>
#include <cmath>
using namespace std;
typedef long long LL;
typedef pair<int,LL> P;
#define mkp(a,b) make_pair(a,b)
#define ft first
#define sd second
int read()
{
int x=0,f=1;
char ch=getchar();
while (!isdigit(ch)) f=ch=='-'?-1:f,ch=getchar();
while (isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x*f;
}
const int N=150050;
const int M=N<<1;
const int LGN=18;
const int S=N*LGN;
const int EL=N<<1;
const int LGEL=19;
int high[N],size[N],fa[N],last[N],pos[N],age[N],op[N],ed[N],cf[N];
int n,el,lgel,tot,A,root,ptr,Q;
int tov[M],next[M],len[M];
int rmq[EL][LGEL];
int euler[EL];
LL sum[2][S];
bool vis[N];
P f[2][S];
LL up[N];
LL ans;
void insert(int x,int y,int z){tov[++tot]=y,len[tot]=z,next[tot]=last[x],last[x]=tot;}
bool cmp(P x,P y){return age[x.ft]<age[y.ft];}
void dfs(int x)
{
pos[euler[++el]=x]=el;
for (int i=last[x],y;i;i=next[i])
if ((y=tov[i])!=fa[x])
high[y]=high[x]+1,up[y]=up[x]+len[i],fa[y]=x,dfs(y),euler[++el]=x;
}
void pre()
{
for (int i=1;i<=el;i++) rmq[i][0]=euler[i];
lgel=trunc(log(el)/log(2));
for (int j=1;j<=lgel;j++)
for (int i=1;i+(1<<j)-1<=el;i++)
if (high[rmq[i][j-1]]<high[rmq[i+(1<<j-1)][j-1]])
rmq[i][j]=rmq[i][j-1];
else
rmq[i][j]=rmq[i+(1<<j-1)][j-1];
}
P q[N];
int head,tail;
int core(int c)
{
head=0,tail=1,q[1]=mkp(c,0);
size[c]=1,fa[c]=0;
int x,y,i,cr,si=n;
while (head!=tail)
{
x=q[++head].ft;
for (i=last[x];i;i=next[i])
if (fa[x]!=(y=tov[i])&&!vis[y])
q[++tail]=mkp(y,0),size[y]=1,fa[y]=x;
}
for (head=tail;head>1;head--) size[fa[q[head].ft]]+=size[q[head].ft];
for (head=1;head<=tail;head++)
{
x=q[head].ft;
int tmp=0;
for (i=last[x];i;i=next[i])
if (fa[x]!=(y=tov[i])&&!vis[y]) tmp=max(tmp,size[y]);
tmp=max(tmp,size[c]-size[x]);
if (tmp<si) si=tmp,cr=x;
}
return cr;
}
int getrmq(int l,int r)
{
int lgr=trunc(log(r-l+1)/log(2));
return high[rmq[l][lgr]]<high[rmq[r-(1<<lgr)+1][lgr]]?rmq[l][lgr]:rmq[r-(1<<lgr)+1][lgr];
}
int lca(int x,int y)
{
if ((x=pos[x])>(y=pos[y])) swap(x,y);
return getrmq(x,y);
}
LL dist(int x,int y){return up[x]+up[y]-(up[lca(x,y)]<<1);}
int dec(int c,int F)
{
fa[c=core(c)]=F;
int i,x,y;
LL d;
head=0,tail=1,q[1]=mkp(c,0),op[c]=ptr+1;
while (head!=tail)
{
x=(f[0][++ptr]=q[++head]).ft,d=q[head].sd;
for (i=last[x];i;i=next[i])
if (fa[x]!=(y=tov[i])&&!vis[y])
q[++tail]=mkp(y,d+len[i]),fa[y]=x;
}
ed[c]=ptr;
sort(f[0]+op[c],f[0]+ed[c]+1,cmp);
if (F) for (int i=op[c];i<=ed[c];i++) x=f[0][i].ft,f[1][i]=mkp(x,dist(x,F));
for (int t=0;t<=1;t++)
{
sum[t][op[c]]=f[t][op[c]].sd;
for (int i=op[c]+1;i<=ed[c];i++) sum[t][i]=sum[t][i-1]+f[t][i].sd;
}
for (vis[c]=true,i=last[c];i;i=next[i])
if (!vis[y=tov[i]]) cf[dec(y,c)]=c;
return c;
}
LL getsum(bool t,int x,int L,int R,LL D)
{
int l=op[x],r=ed[x],mid,l0=-1,r0=-1;
if (l>r) return 0;
while (l<=r)
{
mid=l+r>>1;
if (age[f[t][mid].ft]>=L) l0=mid,r=mid-1;
else l=mid+1;
}
l=op[x],r=ed[x];
while (l<=r)
{
mid=l+r>>1;
if (age[f[t][mid].ft]<=R) r0=mid,l=mid+1;
else r=mid-1;
}
if (l0>r0) return 0;
if (l0==-1||r0==-1) return 0;
LL ret=sum[t][r0]-(l0==op[x]?0:sum[t][l0-1]);
ret+=D*(r0-l0+1);
return ret;
}
LL query(int x,int L,int R)
{
LL ret=0,D=0;
for (int u=x;x;x=cf[x])
{
ret+=getsum(0,x,L,R,D);
if (cf[x]) D=dist(u,cf[x]),ret-=getsum(1,x,L,R,D);
}
return ret;
}
int main()
{
freopen("shop.in","r",stdin),freopen("shop.out","w",stdout);
n=read(),Q=read(),A=read();
for (int i=1;i<=n;i++) age[i]=read();
for (int i=1,a,b,c;i<n;i++)
{
a=read(),b=read(),c=read();
insert(a,b,c),insert(b,a,c);
}
dfs(1),pre(),root=dec(1,0),ans=0;
for (int i=1,u,a,b,L,R;i<=Q;i++)
{
u=read(),a=read(),b=read();
L=min((a+ans)%A,(b+ans)%A),R=max((a+ans)%A,(b+ans)%A);
ans=query(u,L,R);
printf("%lld\n",ans);
}
fclose(stdin),fclose(stdout);
return 0;
}