Unique Paths:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
class Solution {
public:
int uniquePaths(int m, int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<int> > grid(m,vector<int>(n,0));
for(int i=0;i<m;i++)
grid[i][0]=1;
for(int i=0;i<n;i++)
grid[0][i]=1;
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
grid[i][j]=grid[i-1][j]+grid[i][j-1];
return grid[m-1][n-1];
}
};
Unique Paths II:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &grid) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int m=grid.size();
if ( m==0 )
return 0;
int n = grid[0].size();
for(int i=0;i<m;i++)
assert(grid[i].size()==n);
if ( grid[0][0]== 1 )
return 0;
vector<vector<int> > path(m,vector<int>(n,0));
path[0][0]=1;
for(int i=1;i<m;i++)
{
if ( grid[i][0]==0 && path[i-1][0]==1)
path[i][0]=1;
else
path[i][0]=0;
}
for(int j=1;j<n;j++)
{
if (grid[0][j]==0 &&path[0][j-1]==1)
path[0][j]=1;
else
path[0][j]=0;
}
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
if( grid[i][j]==1 )
path[i][j]=0;
else
{
path[i][j]=path[i-1][j]+path[i][j-1];
}
}
}
return path[m-1][n-1];
}
};
Minimum Path Sum:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int m=grid.size();
if ( m==0 )
return 0;
int n = grid[0].size();
for(int i=0;i<m;i++)
assert(grid[i].size()==n);
vector<vector<int> > sum(m,vector<int>(n,0));
sum[0][0]=grid[0][0];
for(int i=1;i<m;i++)
sum[i][0]=sum[i-1][0]+grid[i][0];
for(int i=1;i<n;i++)
sum[0][i]=sum[0][i-1]+grid[0][i];
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
sum[i][j]=min(sum[i-1][j],sum[i][j-1])+grid[i][j];
return sum[m-1][n-1];
}
};