Next Permutation:
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.
If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).
The replacement must be in-place, do not allocate extra memory.
Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
class Solution {
public:
void nextPermutation(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int n=num.size();
if ( n<=1)
return;
int p=n-2;
while(p>=0&&num[p]>=num[p+1])
p--;
if ( p<0 )
{
sort(num.begin(),num.end());
return;
}
int k=p+1;
while(k<n&&num[k]>num[p])
k++;
k--;
swap(num[p],num[k]);
sort(&num[p+1],&num[n]);
return;
}
};
Permutations:
Given a collection of numbers, return all possible permutations.
For example,
[1,2,3] have
the following permutations:
[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2],
and [3,2,1]
class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<int> > ans;
solve(ans,num,0);
return ans;
}
void solve(vector<vector<int> >& ans, vector<int>& num,int k)
{
int n =num.size();
if ( k>=n )
{
ans.push_back(num);
return;
}
for(int i=k;i<n;i++)
{
swap(num[i],num[k]);
solve(ans,num,k+1);
swap(num[i],num[k]);
}
}
};
Permutations II:
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2] have
the following unique permutations:
[1,1,2], [1,2,1],
and [2,1,1].
其实如果可以用STL的函数next_permutation的话,一直next_permutation到false,每次把num加到结果里就行了,很简单吧~当然要先sort一下,不过面试时这样答的话,面试官就会让你实现next_permutation了~好在我们前面也做过啊~
另外一个方法就是用一个数组来记录一个数是否出现在一个位置过了
class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<int> > ans;
vector<int> cur;
vector<int> used(num.size(),0);
sort(num.begin(),num.end());
solve(ans,num,cur,used);
return ans;
}
void solve(vector<vector<int> >& ans,vector<int>& num,vector<int>& cur,vector<int>& used)
{
int n=num.size();
if ( cur.size()==n)
{
ans.push_back(cur);
return;
}
for(int i=0;i<n;i++)
{
if ( used[i]||(i!=0&&num[i-1]==num[i]&&used[i-1]))
continue;
cur.push_back(num[i]);
used[i]=1;
solve(ans,num,cur,used);
used[i]=0;
cur.pop_back();
}
}
};
另外就是用一个set记录num[i]是否已经放在K这个位置过了。
class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<int> > ans;
sort(num.begin(),num.end());
solve(ans,num,0);
return ans;
}
void solve(vector<vector<int> >& ans,vector<int>& num,int k)
{
int n=num.size();
if ( k==n)
{
ans.push_back(num);
return;
}
set<int> used;
for(int i=k;i<n;i++)
{
if ( used.find(num[i])!=used.end())
continue;
swap(num[i],num[k]);
solve(ans,num,k+1);
swap(num[i],num[k]);
used.insert(num[i]);
}
}
};
Permutation Sequence:
The set [1,2,3,…,n] contains
a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
-
"123" -
"132" -
"213" -
"231" -
"312" -
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
class Solution {
public:
string getPermutation(int n, int k) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<int> canUse(n,0);
vector<int> comp(n+1,1);
for(int i=2;i<=n;i++)
comp[i]=comp[i-1]*(i-1);
string ans;
k--;
for(int i=n;i>0;i--)
{
int t=k/comp[i];
k=k%comp[i];
ans.push_back(getUse(canUse,t)+'0');
}
return ans;
}
int getUse(vector<int>& canUse,int k)
{
for(int i=0;i<canUse.size();i++)
{
if(canUse[i]==0)
{
if(k==0)
{
canUse[i]=1;
return i+1;
}
k--;
}
}
return -1;
}
};
本文深入探讨了多种排列相关算法,包括求下一个排列(nextPermutation)、生成所有可能的排列(Permutations)及其变种(PermutationsII),以及求第K个排列(PermutationSequence)等。文章提供了详细的C++实现代码,并通过实例讲解了这些算法的工作原理。
617

被折叠的 条评论
为什么被折叠?



