Race to 1 Again
Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input
3
1
2
50
Sample Output
Case 1: 0
Case 2: 2.00
Case 3: 3.0333333333
题目大意是,给你一个数N,可以选择一个1~N里的数且是N的约数D,将N/=D,接着循环着做,知道N=1,求完成目标的期望步数.
设数N的期望为E[N],则:
E[n]=E[a[1]]/cnt+E[a[2]]/cnt+...+E[a[cnt]]/cnt+1
而因为a[cnt]就是n,所以设E[a[1]]/cnt+E[a[2]]/cnt+...+E[a[cnt-1]]/cnt=S
则E[n]=(S+E[n])/cnt+1;解得E[n]=(S+cnt)/(cnt-1)注意,E[1]就等于0哦.

1 #include<cstdio>
2 #include<cstring>
3 #include<algorithm>
4 #include<cmath>
5 using namespace std;
6 int n;
7 double E[100005];
8 int main(){
9 memset(E,0,sizeof E),E[1]=0,E[2]=2;
10 for (int i=3; i<=100000; i++){
11 double sumE=0,num=0;
12 for (int j=1; j<=sqrt(i); j++) if (i%j==0) sumE+=E[j],num++,sumE+=E[i/j]*(j*j!=i),num+=(j*j!=i);
13 E[i]=(sumE+num)/(num-1);
14 }
15 int T; scanf("%d",&T);
16 for (int Ts=1; Ts<=T; Ts++){
17 scanf("%d",&n);
18 printf("Case %d: %.10lf\n",Ts,E[n]);
19 }
20 return 0;
21 }
本文探讨了一个数学游戏,玩家从一个正整数N开始,每次选择N的一个除数并用N除以该除数,直到N变为1。文章通过递推公式解析了完成游戏所需的平均步数,并提供了C++实现代码。
209

被折叠的 条评论
为什么被折叠?



