SPOJSUBST1-New Distinct Substrings

本文介绍了一种使用后缀数组解决寻找字符串中所有不同子串数量的方法。通过构造后缀数组并利用LCP数组计算每一对相邻后缀的最大公共前缀长度,进而得出字符串的不同子串总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SUBST1 - New Distinct Substrings


Given a string, we need to find the total number of its distinct substrings.

Input

T- number of test cases. T<=20; Each test case consists of one string, whose length is <= 50000

Output

For each test case output one number saying the number of distinct substrings.

Example

Input:
2
CCCCC
ABABA

Output:
5
9


题意:给定一个字符串,求不同子串的数目

解题思路:后缀数组



#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>

using namespace std;

#define LL long long
const int INF = 0x3f3f3f3f;
const int N = 200010;

struct Sa
{
	char s[N];
	int rk[2][N], sa[N], h[N], w[N], now, n;
	int rmq[N][20], lg[N], bel[N];

	void GetS()
	{
		scanf("%s", s + 1);
		n = strlen(s + 1);
	}

	void getsa(int z, int &m)
	{
		int x = now, y = now ^= 1;
		for (int i = 1; i <= z; i++) rk[y][i] = n - i + 1;
		for (int i = 1, j = z; i <= n; i++)
			if (sa[i] > z) rk[y][++j] = sa[i] - z;
		for (int i = 1; i <= m; i++) w[i] = 0;
		for (int i = 1; i <= n; i++) w[rk[x][rk[y][i]]]++;
		for (int i = 1; i <= m; i++) w[i] += w[i - 1];
		for (int i = n; i >= 1; i--) sa[w[rk[x][rk[y][i]]]--] = rk[y][i];
		for (int i = m = 1; i <= n; i++)
		{
			int *a = rk[x] + sa[i], *b = rk[x] + sa[i - 1];
			rk[y][sa[i]] = *a == *b&&*(a + z) == *(b + z) ? m - 1 : m++;
		}
	}

	void getsa(int m)
	{
		now = rk[1][0] = sa[0] = s[0] = 0;
		for (int i = 1; i <= m; i++) w[i] = 0;
		for (int i = 1; i <= n; i++) w[s[i]]++;
		for (int i = 1; i <= m; i++) rk[1][i] = rk[1][i - 1] + (bool)w[i];
		for (int i = 1; i <= m; i++) w[i] += w[i - 1];
		for (int i = 1; i <= n; i++) rk[0][i] = rk[1][s[i]];
		for (int i = 1; i <= n; i++) sa[w[s[i]]--] = i;
		rk[1][n + 1] = rk[0][n + 1] = 0;
		for (int x = 1, y = rk[1][m]; x <= n&&y <= n; x <<= 1) getsa(x, y);
		for (int i = 1, j = 0; i <= n; h[rk[now][i++]] = j ? j-- : j)
		{
			if (rk[now][i] == 1) continue;
			int k = n - max(sa[rk[now][i] - 1], i);
			while (j <= k&&s[sa[rk[now][i] - 1] + j] == s[i + j]) ++j;
		}
	}

	void getrmq()
	{
		h[n + 1] = h[1] = lg[1] = 0;
		for (int i = 2; i <= n; i++)
			rmq[i][0] = h[i], lg[i] = lg[i >> 1] + 1;
		for (int i = 1; (1 << i) <= n; i++)
		{
			for (int j = 2; j <= n; j++)
			{
				if (j + (1 << i) > n + 1) break;
				rmq[j][i] = min(rmq[j][i - 1], rmq[j + (1 << i - 1)][i - 1]);
			}
		}
	}

	int lcp(int x, int y)
	{
		int l = min(rk[now][x], rk[now][y]) + 1, r = max(rk[now][x], rk[now][y]);
		return min(rmq[l][lg[r - l + 1]], rmq[r - (1 << lg[r - l + 1]) + 1][lg[r - l + 1]]);
	}

	void work()
	{
		getsa(300);
		int ans = n + 1 - sa[1];
		for (int i = 2; i <= n; i++)
		{
			if (h[i] <= 0) ans += n + 1 - sa[i];
			else ans += n + 1 - sa[i] - h[i];
		}
		printf("%d\n", ans);
	}
}sa;

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		sa.GetS();
		sa.work();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值