URAL1517-Freedom of Choice

本文介绍了一种使用后缀数组解决两个字符串最长公共子串问题的算法实现。通过连接两个字符串并利用未出现过的字符进行分隔,该方法能够高效地找出最长的相同片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Freedom of Choice

Time limit: 2.0 second
Memory limit: 64 MB

Background

Before Albanian people could bear with the freedom of speech (this story is fully described in the problem  "Freedom of speech"), another freedom - the freedom of choice - came down on them. In the near future, the inhabitants will have to face the first democratic Presidential election in the history of their country.
Outstanding Albanian politicians liberal Mohammed Tahir-ogly and his old rival conservative Ahmed Kasym-bey declared their intention to compete for the high post.

Problem

According to democratic traditions, both candidates entertain with digging dirt upon each other to the cheers of their voters' approval. When occasion offers, each candidate makes an election speech, which is devoted to blaming his opponent for corruption, disrespect for the elders and terrorism affiliation. As a result the speeches of Mohammed and Ahmed have become nearly the same, and now it does not matter for the voters for whom to vote.
The third candidate, a chairman of Albanian socialist party comrade Ktulhu wants to make use of this situation. He has been lazy to write his own election speech, but noticed, that some fragments of the speeches of Mr. Tahir-ogly and Mr. Kasym-bey are completely identical. Then Mr. Ktulhu decided to take the longest identical fragment and use it as his election speech.

Input

The first line contains the integer number  N (1 ≤  N ≤ 100000). The second line contains the speech of Mr. Tahir-ogly. The third line contains the speech of Mr. Kasym-bey. Each speech consists of  N capital latin letters.

Output

You should output the speech of Mr. Ktulhu. If the problem has several solutions, you should output any of them.

Sample

input output
28
VOTEFORTHEGREATALBANIAFORYOU
CHOOSETHEGREATALBANIANFUTURE
THEGREATALBANIA
Problem Author: Ilya Grebnov, Nikita Rybak, Dmitry Kovalioff
Problem Source: Timus Top Coders: Third Challenge

题意:给你两个字符串,求出它们的最长公共子串

解题思路:后缀数组,将两个字符串连接起来,中间用没出现过的字符连接即可


#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>

using namespace std;

#define N 200010

struct Sa
{
    char s[N],s1[N],s2[N];
    int rk[2][N],sa[N],h[N],w[N],now,n;
    int rmq[N][20],lg[N];

    bool GetS()
    {
        if(scanf("%d",&n)==EOF) return false;
        scanf("%s",s1+1);
        scanf("%s",s2+1);
        for(int i=1;i<=n;i++) s[i]=s1[i];
        s[n+1]='$';
        for(int i=n+2;i<=n+n+2;i++) s[i]=s2[i-n-1];
        n=n+n+1;
        return true;
    }

    void getsa(int z,int &m)
    {
        int x=now,y=now^=1;
        for(int i=1;i<=z;i++) rk[y][i]=n-i+1;
        for(int i=1,j=z;i<=n;i++)
            if(sa[i]>z) rk[y][++j]=sa[i]-z;
        for(int i=1;i<=m;i++) w[i]=0;
        for(int i=1;i<=n;i++) w[rk[x][rk[y][i]]]++;
        for(int i=1;i<=m;i++) w[i]+=w[i-1];
        for(int i=n;i>=1;i--) sa[w[rk[x][rk[y][i]]]--]=rk[y][i];
        for(int i=m=1;i<=n;i++)
        {
            int *a=rk[x]+sa[i],*b=rk[x]+sa[i-1];
            rk[y][sa[i]]=*a==*b&&*(a+z)==*(b+z)?m-1:m++;
        }
    }

    void getsa(int m)
    {
        now=rk[1][0]=sa[0]=s[0]=0;
        for(int i=1;i<=m;i++) w[i]=0;
        for(int i=1;i<=n;i++) w[s[i]]++;
        for(int i=1;i<=m;i++) rk[1][i]=rk[1][i-1]+(bool)w[i];
        for(int i=1;i<=m;i++) w[i]+=w[i-1];
        for(int i=1;i<=n;i++) rk[0][i]=rk[1][s[i]];
        for(int i=1;i<=n;i++) sa[w[s[i]]--]=i;
        rk[1][n+1]=rk[0][n+1]=0;
        for(int x=1,y=rk[1][m];x<=n&&y<=n;x<<=1) getsa(x,y);
        for(int i=1,j=0;i<=n;h[rk[now][i++]]=j?j--:j)
        {
            if(rk[now][i]==1) continue;
            int k=n-max(sa[rk[now][i]-1],i);
            while(j<=k&&s[sa[rk[now][i]-1]+j]==s[i+j]) ++j;
        }

    }

    void getrmq()
    {
        h[n+1]=h[1]=lg[1]=0;
        for(int i=2;i<=n;i++)
            rmq[i][0]=h[i],lg[i]=lg[i>>1]+1;
        for(int i=1;(1<<i)<=n;i++)
        {
            for(int j=2;j<=n;j++)
            {
                if(j+(1<<i)>n+1) break;
                rmq[j][i]=min(rmq[j][i-1],rmq[j+(1<<i-1)][i-1]);
            }
        }
    }

    int lcp(int x,int y)
    {
        int l=min(rk[now][x],rk[now][y])+1,r=max(rk[now][x],rk[now][y]);
        return min(rmq[l][lg[r-l+1]],rmq[r-(1<<lg[r-l+1])+1][lg[r-l+1]]);
    }

    void work()
    {
        int ans=-1;
        int mi;
        for(int i=2;i<=n;i++)
        {
            int MAX=max(sa[i-1],sa[i]);
            int MIN=min(sa[i-1],sa[i]);
            if(MAX>n/2&&MIN<n/2&&ans<h[i])
                ans=h[i],mi=MIN;
        }
        for(int i=mi;i<mi+ans;i++)
            printf("%c",s[i]);
        printf("\n");
    }
}sa;

int main()
{
    while(sa.GetS())
    {
        sa.getsa(300);
        sa.work();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值