GCD
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 3629 Accepted Submission(s): 1305
Problem Description
Give you a sequence of
N(N≤100,000)
integers :
a1,...,an(0<ai≤1000,000,000)
. There are
Q(Q≤100,000)
queries. For each query
l,r
you have to calculate
gcd(al,,al+1,...,ar)
and count the number of pairs
(l′,r′)(1≤l<r≤N)
such that
gcd(al′,al′+1,...,ar′)
equal
gcd(al,al+1,...,ar)
.
Input
The first line of input contains a number
T
, which stands for the number of test cases you need to solve.
The first line of each case contains a number N , denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a number Q , denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri , stand for the i-th queries.
The first line of each case contains a number N , denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a number Q , denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri , stand for the i-th queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes,
t
means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
Sample Input
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
Sample Output
Case #1: 1 8 2 4 2 4 6 1
Author
HIT
Source
Recommend
wange2014
题意:给出n个数,有q次询问,每个给出一个区间,问有多少个区间的gcd和这个区间的gcd相同
解题思路:先预处理出每个位置为左端点,通过二分+RMQ找出向右每种gcd有几个,用map保存每种gcd有几个
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int dp[100009][20],a[100009],n,q,x;
int gcd(int a, int b)
{
if (a > b) swap(a, b);
while (b%a)
{
int k = b%a;
b = a;
a = k;
}
return a;
}
void init()
{
for (int i = 1; i <= n; i++) dp[i][0] = a[i];
for (int i = 1; (1 << i) <= n; i++)
for (int j = 1; j + (1 << i) - 1 <= n; j++)
dp[j][i] = gcd(dp[j][i - 1], dp[j + (1 << (i - 1))][i - 1]);
}
int query(int l, int r)
{
int k = 0;
while (r - l + 1 >= 1 << (k + 1)) k++;
return gcd(dp[l][k], dp[r - (1 << k) + 1][k]);
}
int solve(int a, int p,int pp)
{
int l = pp, r = n,ans;
while (l <= r)
{
int mid = (l + r) >> 1;
int k = query(p, mid);
if (k == x) { ans = mid, l = mid + 1; }
else if (k < x) r = mid - 1;
else l = mid + 1;
}
return ans;
}
int main()
{
int t, cas = 0;
scanf("%d", &t);
while (t--)
{
printf("Case #%d:\n", ++cas);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
init();
map<int, LL>mp;
for (int i = 1; i <= n; i++)
{
x = a[i];
int pos = i;
while (pos<=n)
{
int pos1 = solve(x,i, pos)+1;
mp[x] += (pos1 - pos);
if (pos1 > n) break;
x = query(i,pos1);
pos = pos1;
}
}
scanf("%d", &q);
while (q--)
{
int l, r;
scanf("%d%d", &l, &r);
x = query(l, r);
printf("%d %lld\n", x, mp[x]);
}
}
return 0;
}