Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7377 | Accepted: 2511 |
Description
Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i < j ≤ N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!
Note in this problem, the median is defined as the (m/2)-th smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of m = 6.
Input
The input consists of several test cases.
In each test case, N will be given in the first line. Then N numbers are given, representing X1, X2, ... , XN, ( Xi ≤ 1,000,000,000 3 ≤ N ≤ 1,00,000 )
Output
For each test case, output the median in a separate line.
Sample Input
4 1 3 2 4 3 1 10 2
Sample Output
1 8
Source
题意:给出一个数列,然后计算数列里各个数之间的差值的绝对值,形成一个新数列,求新数列的中位数
解题思路:算出新数列一共有多少个数,然后二分中间值,验证的时候也要通过二分来查找数字的位置
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <cmath>
#include <map>
#include <bitset>
#include <set>
#include <vector>
#include <functional>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
int a[100009],n,k;
bool check(int x)
{
int sum=0;
for(int i=1;i<n;i++)
{
int kk=upper_bound(a+i+1,a+1+n,x+a[i])-a-1;
sum+=(kk-i);
}
if(sum>=k) return 1;
else return 0;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+1+n);
k=n*(n-1)/2;
if(k&1) k=(k+1)/2;
else k/=2;
int l=0,r=INF,ans;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)) {r=mid-1;ans=mid;}
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}