[apio2010]特别行动队(斜率优化的dp)

本文探讨了一种使用动态规划、斜率优化和单调队列优化方法解决序列分组问题,以最大化每份的收益。通过变形公式和变量转换,简化了原问题并实现了高效求解。

[题目简述]

        给你一个序列,你要将他们分成连续的若干份.每一份带给你的收益是ax^2+bx+c,其中x是这一份的和,a<0

[题解]

        对于这道题,我们可以很容易的写出方程:f[i]=max(f[j]+a*(s[i]-s[j])^2+b*(s[i]-s[j])+c);因为数据范围是100W,所以我们猜测这个dp要用斜率优化或单调队列优化.

        现在我们对他做一下变形.

        f[i]=max(f[j]+a*(s[i]*s[i]+s[j]*s[j]+2*s[i]*s[j])+b*(s[i]-s[j])+c)
            =max(f[j]+a*a[j]*a[j]+2*a*s[i]*s[j]-b*s[j])+a*s[i]*s[i]+b*s[i]+c

        可以发现,f[j]+a*a[j]*a[j]-b*s[j]只与j有关,a*s[i]*s[i]+b*s[i]+c只与i有关,2*a*s[i]*s[j]与i,j有关且单调递减(a<0),而f[j]+a*a[j]*a[j]-b*s[j]则没有单调性.

        我们令k=a*s[i]*s[i]+b*s[i]+c,x[i]=2*a*s[i],y[i]=f[i]+a*a[i]*a[i]-b*s[i],则:f[i]=max(y[i]+s[i]*x[i])+k

        令P=y[j]+s[i]*x[j],我们的目标就是最大化P.移项得:y[j]=P-s[i]*x[j].

       我们再令x[j]=-x[j],则:y[j]=s[i]*x[j]+P.其中,x随j单调递增.由于s随i单调递增,所以直线的斜率也单调递增,所以我们可以利用斜率优化来解决这道题.

Code:

program commando;
type int=longint;real=extended;
var
        i,j,m,l,r,n:int;
        a,b,k,c:real;
        x,y,f,s:array[0..1000000]of real;
        q:array[0..1000000]of int;

begin
        assign(input,'commando.in');reset(input);
        assign(output,'commando.out');rewrite(output);
        read(n);
        read(a,b,c);s[0]:=0;
        for i:=1 to n do begin
                read(s[i]);s[i]:=s[i-1]+s[i];
        end;
        l:=1;r:=1;q[l]:=0;f[0]:=0;
        for i:=1 to n do begin
                k:=c+b*s[i]+a*s[i]*s[i];
                while(l<r)and((y[q[l]]-y[q[l+1]])/(x[q[l]]-x[q[l+1]])<s[i])do inc(l);
                f[i]:=k+y[q[l]]-s[i]*x[q[l]];
                x[i]:=2*a*s[i];y[i]:=f[i]-b*s[i]+a*s[i]*s[i];
                while(l<r)and((y[q[r]]-y[q[r-1]])/(x[q[r]]-x[q[r-1]])>(y[q[r]]-y[i])/(x[q[r]]-x[i]))do dec(r);
                inc(r);q[r]:=i;
        end;
        write(f[n]:0:0);
        close(input);close(output);
end.

另外,我想申明一下,由于本人写blog的主要目的是将刚学过的东西巩固一下,所以代码的效率不一定有多高,实现方式不一定很精简,请某些同学就不要挑一些小毛病了.贴上来的程序只是做一个参考,不过我还是会保证正确性的.


BY QW

转载请注明出处

该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年1224日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>我们之前已经详细讲解过斜率优化DP,但用户再次要求详细讲解,因此需要重新组织内容,并且按照要求最后输出相关问题。 注意:用户明确要求使用中文回答,并在最后输出3-5个相关问题,且第一行必须是“§§相关问题§§”,禁止换行分散。 我们将按照以下结构进行讲解: 1. 斜率优化DP的定义和适用场景 2. 核心思想与原理(几何意义、斜率公式推导) 3. 实现步骤(包括状态转移方程转换、斜率计算、单调队列维护) 4. 代码示例(以序列分割最小化平方和为例) 5. 注意事项 最后,提出3-5个相关问题。 注意:由于用户重复提问,我们可以适当调整内容,但必须详细讲解。 开始回答: </think>### 斜率优化DP详细讲解 斜率优化DP是一种用于优化动态规划状态转移的高效技巧,特别适用于状态转移方程形式为 \(\text{dp}[i] = \min_{j<i} \{\text{dp}[j] + f(i,j)\}\) 且 \(f(i,j)\) 具有凸性特征的问题。其核心是将数值比较转化为几何斜率比较,通过维护决策点的凸包(通常用单调队列),将复杂度从 \(O(n^2)\) 降至 \(O(n)\)。 #### 一、核心原理 1. **问题特征** 需满足决策单调性:设 \(f(i,j) = a(i) \cdot b(j) + c(i) + d(j)\),其中 \(b(j)\) 单调递增,且 \(\text{dp}[j] + d(j)\) 和 \(b(j)\) 构成凸函数关系(如二次函数)。 2. **斜率转化** 将状态转移方程重写为直线截距形式: \[ \text{dp}[i] - c(i) = \min_{j} \{ (\text{dp}[j] + d(j)) - a(i) \cdot b(j) \} \] 其中 \(y_j = \text{dp}[j] + d(j)\) 为纵坐标,\(x_j = b(j)\) 为横坐标,目标是最小化直线 \(y = a(i) \cdot x + k\) 的截距 \(k\)。 3. **凸包维护** - 决策点 \((x_j, y_j)\) 需构成下凸包(斜率单调递增)。 - 最优决策点位于凸包切线斜率等于 \(a(i)\) 的位置。 #### 二、实现步骤(以序列分割最小化平方和为例) **问题模型**: 设前缀和数组 \(s\),状态转移方程: \[ \text{dp}[i] = \min_{j<i} \{ \text{dp}[j] + (s_i - s_j)^2 \} \] **步骤分解**: 1. **方程变形**: \[ \text{dp}[i] = \min_{j} \{ \text{dp}[j] + s_j^2 - 2s_i s_j \} + s_i^2 \] 此时 \(y_j = \text{dp}[j] + s_j^2\),\(x_j = s_j\),目标斜率 \(k_i = 2s_i\). 2. **斜率计算**: 决策点 \(j\) 和 \(k\)斜率: \[ \text{slope}(j,k) = \frac{y_j - y_k}{x_j - x_k} \quad (x_j \neq x_k) \] 3. **单调队列操作**: - **查询最优 \(j\)**: 移除队头斜率 \(\leq k_i\) 的点(因 \(s_i\) 递增,\(k_i\) 递增)。 - **维护凸包**: 插入新点 \(i\) 前,移除队尾破坏凸性的点(若 \(\text{slope}(j,k) \geq \text{slope}(k,i)\) 则删 \(k\))。 #### 三、代码实现 ```python from collections import deque def slope_optimization_dp(n, s): # s[0..n]为前缀和,s[0]=0 dp = [0] * (n + 1) q = deque() q.append(0) # 初始决策点j=0 def y(j): return dp[j] + s[j] * s[j] # 纵坐标y_j def slope(j, k): # 计算斜率 if s[j] == s[k]: return float('-inf') if y(j) < y(k) else float('inf') return (y(j) - y(k)) / (s[j] - s[k]) for i in range(1, n + 1): # 队头维护:移除斜率<=2*s[i]的点 while len(q) >= 2 and slope(q[0], q[1]) <= 2 * s[i]: q.popleft() j = q[0] dp[i] = dp[j] + (s[i] - s[j]) ** 2 # 状态转移 # 队尾维护:移除破坏下凸性的点 while len(q) >= 2 and slope(q[-2], q[-1]) >= slope(q[-1], i): q.pop() q.append(i) return dp[n] # 示例:s = [0, 1, 3, 6] 对应序列[1,2,3] ``` #### 四、关键点与注意事项 1. **适用条件**: - \(b(j)\) 需单调(否则需平衡树维护凸包)。 - \(a(i)\) 需单调(否则需二分查找最优决策点)。 2. **边界处理**: - \(x_j = x_k\) 时需特殊处理斜率(返回无穷大)。 - 初始加入虚拟点 \(j=0\)。 3. **典型应用**: - 任务调度(HDU 3507) - 序列分割(APIO 2010) - 仓库建设(CEOI 2004) #### 五、与四边形优化的区别 - **斜率优化**:针对 \(f(i,j)\) 关于 \(j\) 凸,依赖单变量斜率比较。 - **四边形优化**:针对 \(f(i,j)\) 关于区间单调,依赖二维决策单调性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值