~量子编程~固定代码如何输出不确定结果但逻辑一致???绕口啊^_^

本文介绍了量子编程的基础概念,并通过中国科学技术大学的'九章'量子计算机实例展示了量子计算的高效性。文章提供了多个量子编程案例,包括简单的量子门操作、量子隐形传态、量子傅立叶变换等,旨在引导读者入门量子计算,并预览未来量子互联网时代的信息动态传输特点。

量子编程公开课现在越来越多了,之前博文(从2050回顾2020,职业规划与技术路径)提及一句:

  • 量子计算机是实现智联网的关键,量子机器人是实现移动智联网的关键。现有技术网络上传输的信息是不变的,智联网时代网络上传输的信息是动态的,端端之间是活的信息。

更多内容参考九章量子计算机:

中国科学技术大学的潘建伟、陆朝阳等人构建了一台76个光子100个模式的量子计算机“九章”,它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍。也就是说,超级计算机需要一亿年完成的任务,“九章”只需一分钟。同时,“九章”也等效地比谷歌去年发布的53个超导比特量子计算机原型机“悬铃木”快一百亿倍。

博文中关于量子相关博客如下:

但是并未作任何解释,本文写一点相关内容,抛砖引玉^_^

全部操作视频录像如下:

通过量子编程输出演示确定程序对应不确定结果(活的信息)

先是一个简单案例,base.py:

from qiskit import *
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0,1], [0,1])
backend_sim = BasicAer.get_backend('qasm_simulator')
result = execute(qc, backend_sim).result()
print(result.get_counts(qc))

然后是一个复杂一些的案例,teleport.py:

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Quantum teleportation example.

Note: if you have only cloned the Qiskit repository but not
used `pip install`, the examples only work from the root directory.
"""

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute

###############################################################
# Set the backend name and coupling map.
###############################################################
coupling_map = [[0, 1], [0, 2], [1, 2], [3, 2], [3, 4], [4, 2]]
backend = BasicAer.get_backend("qasm_simulator")

###############################################################
# Make a quantum program for quantum teleportation.
###############################################################
q = QuantumRegister(3, "q")
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
c2 = ClassicalRegister(1, "c2")
qc = QuantumCircuit(q, c0, c1, c2, name="teleport")

# Prepare an initial state
qc.u3(0.3, 0.2, 0.1, q[0])

# Prepare a Bell pair
qc.h(q[1])
qc.cx(q[1], q[2])

# Barrier following state preparation
qc.barrier(q)

# Measure in the Bell basis
qc.cx(q[0], q[1])
qc.h(q[0])
qc.measure(q[0], c0[0])
qc.measure(q[1], c1[0])

# Apply a correction
qc.barrier(q)
qc.z(q[2]).c_if(c0, 1)
qc.x(q[2]).c_if(c1, 1)
qc.measure(q[2], c2[0])

###############################################################
# Execute.
# Experiment does not support feedback, so we use the simulator
###############################################################

# First version: not mapped
initial_layout = {q[0]: 0,
                  q[1]: 1,
                  q[2]: 2}
job = execute(qc, backend=backend, coupling_map=None, shots=1024,
              initial_layout=initial_layout)

result = job.result()
print(result.get_counts(qc))

# Second version: mapped to 2x8 array coupling graph
job = execute(qc, backend=backend, coupling_map=coupling_map, shots=1024,
              initial_layout=initial_layout)
result = job.result()
print(result.get_counts(qc))
# Both versions should give the same distribution

当然,官方教程里还有很多示例,分别如下,有兴趣推荐自学哦,10年以后的量子计算机都会用类似模式编程算法的^_^


  • circuit_draw.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Example showing how to draw a quantum circuit using Qiskit.
"""

from qiskit import QuantumCircuit


def build_bell_circuit():
    """Returns a circuit putting 2 qubits in the Bell state."""
    qc = QuantumCircuit(2, 2)
    qc.h(0)
    qc.cx(0, 1)
    qc.measure([0, 1], [0, 1])
    return qc

# Create the circuit
bell_circuit = build_bell_circuit()

# Use the internal .draw() to print the circuit
print(bell_circuit)
  • commutation_relation.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

from qiskit import *

from qiskit.transpiler import PassManager
from qiskit.transpiler.passes import CommutationAnalysis, CommutativeCancellation

circuit = QuantumCircuit(5)
# Quantum Instantaneous Polynomial Time example
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3) 
circuit.z(0)
circuit.z(4)
circuit.cx(0, 1)
circuit.cx(2, 1)
circuit.cx(4, 3)
circuit.cx(2, 3) 
circuit.cx(3, 2) 

print(circuit)

pm = PassManager()
pm.append([CommutationAnalysis(), CommutativeCancellation()])
new_circuit=pm.run(circuit)
print(new_circuit)
  • ghz.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
GHZ state example. It also compares running on experiment and simulator.
"""

from qiskit import QuantumCircuit
from qiskit import BasicAer, execute


###############################################################
# Make a quantum circuit for the GHZ state.
###############################################################
num_qubits = 5
qc = QuantumCircuit(num_qubits, num_qubits, name='ghz')

# Create a GHZ state
qc.h(0)
for i in range(num_qubits-1):
    qc.cx(i, i+1)
# Insert a barrier before measurement
qc.barrier()
# Measure all of the qubits in the standard basis
for i in range(num_qubits):
    qc.measure(i, i)

sim_backend = BasicAer.get_backend('qasm_simulator')
job = execute(qc, sim_backend, shots=1024)
result = job.result()
print('Qasm simulator : ')
print(result.get_counts(qc))
  • initialize.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Example use of the initialize gate to prepare arbitrary pure states.
"""

import math
from qiskit import QuantumCircuit, execute, BasicAer


###############################################################
# Make a quantum circuit for state initialization.
###############################################################
circuit = QuantumCircuit(4, 4, name="initializer_circ")

desired_vector = [
    1 / math.sqrt(4) * complex(0, 1),
    1 / math.sqrt(8) * complex(1, 0),
    0,
    0,
    0,
    0,
    0,
    0,
    1 / math.sqrt(8) * complex(1, 0),
    1 / math.sqrt(8) * complex(0, 1),
    0,
    0,
    0,
    0,
    1 / math.sqrt(4) * complex(1, 0),
    1 / math.sqrt(8) * complex(1, 0)]

circuit.initialize(desired_vector, [0, 1, 2, 3])

circuit.measure([0, 1, 2, 3], [0, 1, 2, 3])

print(circuit)

###############################################################
# Execute on a simulator backend.
###############################################################
shots = 10000

# Desired vector
print("Desired probabilities: ")
print(str(list(map(lambda x: format(abs(x * x), '.3f'), desired_vector))))

# Initialize on local simulator
sim_backend = BasicAer.get_backend('qasm_simulator')
job = execute(circuit, sim_backend, shots=shots)
result = job.result()

counts = result.get_counts(circuit)

qubit_strings = [format(i, '0%sb' % 4) for
                 i in range(2 ** 4)]
print("Probabilities from simulator: ")
print([format(counts.get(s, 0) / shots, '.3f') for
       s in qubit_strings])
  • load_qasm.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Example on how to load a file into a QuantumCircuit."""

from qiskit import QuantumCircuit
from qiskit import QiskitError, execute, BasicAer

circ = QuantumCircuit.from_qasm_file("examples/qasm/entangled_registers.qasm")
print(circ)

# See the backend
sim_backend = BasicAer.get_backend('qasm_simulator')


# Compile and run the Quantum circuit on a local simulator backend
job_sim = execute(circ, sim_backend)
sim_result = job_sim.result()

# Show the results
print("simulation: ", sim_result)
print(sim_result.get_counts(circ))
  • qft.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Quantum Fourier Transform examples.
"""

import math
from qiskit import QuantumCircuit
from qiskit import execute, BasicAer


###############################################################
# make the qft
###############################################################
def input_state(circ, n):
    """n-qubit input state for QFT that produces output 1."""
    for j in range(n):
        circ.h(j)
        circ.u1(-math.pi/float(2**(j)), j)

def qft(circ, n):
    """n-qubit QFT on q in circ."""
    for j in range(n):
        for k in range(j):
            circ.cu1(math.pi/float(2**(j-k)), j, k)
        circ.h(j)

qft3 = QuantumCircuit(5, 5, name="qft3")
qft4 = QuantumCircuit(5, 5, name="qft4")
qft5 = QuantumCircuit(5, 5, name="qft5")

input_state(qft3, 3)
qft3.barrier()
qft(qft3, 3)
qft3.barrier()
for j in range(3):
    qft3.measure(j, j)

input_state(qft4, 4)
qft4.barrier()
qft(qft4, 4)
qft4.barrier()
for j in range(4):
    qft4.measure(j, j)

input_state(qft5, 5)
qft5.barrier()
qft(qft5, 5)
qft5.barrier()
for j in range(5):
    qft5.measure(j, j)

print(qft3)
print(qft4)
print(qft5)

print('Qasm simulator')
sim_backend = BasicAer.get_backend('qasm_simulator')
job = execute([qft3, qft4, qft5], sim_backend, shots=1024)
result = job.result()
print(result.get_counts(qft3))
print(result.get_counts(qft4))
print(result.get_counts(qft5))
  • rippleadd.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Ripple adder example based on Cuccaro et al., quant-ph/0410184.

"""

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit import BasicAer
from qiskit import execute

###############################################################
# Set the backend name and coupling map.
###############################################################
backend = BasicAer.get_backend("qasm_simulator")
coupling_map = [[0,1], [0, 8], [1, 2], [1, 9], [2, 3], [2, 10], [3, 4], [3, 11],
                [4, 5], [4, 12], [5, 6], [5, 13], [6, 7], [6, 14], [7, 15], [8, 9],
                [9, 10], [10, 11], [11, 12], [12, 13], [13, 14], [14, 15]]

###############################################################
# Make a quantum program for the n-bit ripple adder.
###############################################################
n = 2

a = QuantumRegister(n, "a")
b = QuantumRegister(n, "b")
cin = QuantumRegister(1, "cin")
cout = QuantumRegister(1, "cout")
ans = ClassicalRegister(n+1, "ans")
qc = QuantumCircuit(a, b, cin, cout, ans, name="rippleadd")


def majority(p, a, b, c):
    """Majority gate."""
    p.cx(c, b)
    p.cx(c, a)
    p.ccx(a, b, c)


def unmajority(p, a, b, c):
    """Unmajority gate."""
    p.ccx(a, b, c)
    p.cx(c, a)
    p.cx(a, b)


# Build a temporary subcircuit that adds a to b,
# storing the result in b
adder_subcircuit = QuantumCircuit(cin, a, b, cout)
majority(adder_subcircuit, cin[0], b[0], a[0])
for j in range(n - 1):
    majority(adder_subcircuit, a[j], b[j + 1], a[j + 1])
adder_subcircuit.cx(a[n - 1], cout[0])
for j in reversed(range(n - 1)):
    unmajority(adder_subcircuit, a[j], b[j + 1], a[j + 1])
unmajority(adder_subcircuit, cin[0], b[0], a[0])

# Set the inputs to the adder
qc.x(a[0])  # Set input a = 0...0001
qc.x(b)   # Set input b = 1...1111
# Apply the adder
qc += adder_subcircuit
# Measure the output register in the computational basis
for j in range(n):
    qc.measure(b[j], ans[j])
qc.measure(cout[0], ans[n])

###############################################################
# execute the program.
###############################################################

# First version: not mapped
job = execute(qc, backend=backend, coupling_map=None, shots=1024)
result = job.result()
print(result.get_counts(qc))

# Second version: mapped to 2x8 array coupling graph
job = execute(qc, backend=backend, coupling_map=coupling_map, shots=1024)
result = job.result()
print(result.get_counts(qc))

# Both versions should give the same distribution
  • stochastic_swap.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Example of using the StochasticSwap pass."""

from qiskit.transpiler.passes import StochasticSwap
from qiskit.transpiler import CouplingMap, Layout
from qiskit.converters import circuit_to_dag, dag_to_circuit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

coupling = CouplingMap([[0, 1], [1, 2], [1, 3]])
qr = QuantumRegister(4, 'q')
cr = ClassicalRegister(4, 'c')
circ = QuantumCircuit(qr, cr)
circ.cx(qr[1], qr[2])
circ.cx(qr[0], qr[3])
circ.measure(qr[0], cr[0])
circ.h(qr)
circ.cx(qr[0], qr[1])
circ.cx(qr[2], qr[3])
circ.measure(qr[0], cr[0])
circ.measure(qr[1], cr[1])
circ.measure(qr[2], cr[2])
circ.measure(qr[3], cr[3])
dag = circuit_to_dag(circ)
#                                             ┌─┐┌───┐        ┌─┐
# q_0: |0>─────────────────■──────────────────┤M├┤ H ├──■─────┤M├
#                   ┌───┐  │                  └╥┘└───┘┌─┴─┐┌─┐└╥┘
# q_1: |0>──■───────┤ H ├──┼───────────────────╫──────┤ X ├┤M├─╫─
#         ┌─┴─┐┌───┐└───┘  │               ┌─┐ ║      └───┘└╥┘ ║
# q_2: |0>┤ X ├┤ H ├───────┼─────────■─────┤M├─╫────────────╫──╫─
#         └───┘└───┘     ┌─┴─┐┌───┐┌─┴─┐┌─┐└╥┘ ║            ║  ║
# q_3: |0>───────────────┤ X ├┤ H ├┤ X ├┤M├─╫──╫────────────╫──╫─
#                        └───┘└───┘└───┘└╥┘ ║  ║            ║  ║
#  c_0: 0 ═══════════════════════════════╬══╬══╩════════════╬══╩═
#                                        ║  ║               ║
#  c_1: 0 ═══════════════════════════════╬══╬═══════════════╩════
#                                        ║  ║
#  c_2: 0 ═══════════════════════════════╬══╩════════════════════
#                                        ║
#  c_3: 0 ═══════════════════════════════╩═══════════════════════
#
#                                ┌─┐┌───┐                     ┌─┐
# q_0: |0>────────────────────■──┤M├┤ H ├──────────────────■──┤M├──────
#                           ┌─┴─┐└╥┘└───┘┌───┐┌───┐      ┌─┴─┐└╥┘┌─┐
# q_1: |0>──■───X───────────┤ X ├─╫──────┤ H ├┤ X ├─X────┤ X ├─╫─┤M├───
#         ┌─┴─┐ │      ┌───┐└───┘ ║      └───┘└─┬─┘ │    └───┘ ║ └╥┘┌─┐
# q_2: |0>┤ X ├─┼──────┤ H ├──────╫─────────────■───┼──────────╫──╫─┤M├
#         └───┘ │ ┌───┐└───┘      ║                 │ ┌─┐      ║  ║ └╥┘
# q_3: |0>──────X─┤ H ├───────────╫─────────────────X─┤M├──────╫──╫──╫─
#                 └───┘           ║                   └╥┘      ║  ║  ║
#  c_0: 0 ════════════════════════╩════════════════════╬═══════╩══╬══╬═
#                                                      ║          ║  ║
#  c_1: 0 ═════════════════════════════════════════════╬══════════╩══╬═
#                                                      ║             ║
#  c_2: 0 ═════════════════════════════════════════════╬═════════════╩═
#                                                      ║
#  c_3: 0 ═════════════════════════════════════════════╩═══════════════
#
#
#     2
#     |
# 0 - 1 - 3
# Build the expected output to verify the pass worked
expected = QuantumCircuit(qr, cr)
expected.cx(qr[1], qr[2])
expected.swap(qr[0], qr[1])
expected.cx(qr[1], qr[3])
expected.h(qr[3])
expected.h(qr[2])
expected.measure(qr[1], cr[0])
expected.h(qr[0])
expected.swap(qr[1], qr[3])
expected.h(qr[3])
expected.cx(qr[2], qr[1])
expected.measure(qr[2], cr[2])
expected.swap(qr[1], qr[3])
expected.measure(qr[3], cr[3])
expected.cx(qr[1], qr[0])
expected.measure(qr[1], cr[0])
expected.measure(qr[0], cr[1])
expected_dag = circuit_to_dag(expected)

# Run the pass on the dag from the input circuit
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
# Verify the output of the pass matches our expectation
assert expected_dag == after
  • using_qiskit_terra_level_0.py
# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Example showing how to use Qiskit-Terra at level 0 (novice).

This example shows the most basic way to user Terra. It builds some circuits
and runs them on both the BasicAer (local Qiskit provider) or IBMQ (remote IBMQ provider).

To control the compile parameters we have provided a transpile function which can be used 
as a level 1 user.

"""

import time

# Import the Qiskit modules
from qiskit import QuantumCircuit, QiskitError
from qiskit import execute, BasicAer

# making first circuit: bell state
qc1 = QuantumCircuit(2, 2)
qc1.h(0)
qc1.cx(0, 1)
qc1.measure([0,1], [0,1])

# making another circuit: superpositions
qc2 = QuantumCircuit(2, 2)
qc2.h([0,1])
qc2.measure([0,1], [0,1])

# setting up the backend
print("(BasicAER Backends)")
print(BasicAer.backends())

# running the job
job_sim = execute([qc1, qc2], BasicAer.get_backend('qasm_simulator'))
sim_result = job_sim.result()

# Show the results
print(sim_result.get_counts(qc1))
print(sim_result.get_counts(qc2))

 

<think> 我们正在讨论“结到环境热阻”这个概念。用户提到这个称呼,并希望解释这个概念及其名称的来源。 首先,我们需要明确“结到环境热阻”是什么: 在热力学中,热阻用来衡量材料或界面阻碍热量传递的能力。具体到电子元器件,“结”指的是半导体器件内部的发热部位(如芯片的PN结),“环境”则指器件周围的空气或其他介质。 因此,“结到环境热阻”表示热量从芯片内部结区传递到周围环境的总热阻,记为$\Theta_{\text{JA}}$(或$R_{\theta \text{JA}}$)。 为什么这个称呼? 1. 术语专业性:包含“结”、“环境”等专业词汇,对非专业用户不友好。 2. 结构复杂:涉及热传递路径(结→外壳→散热器→环境),但名称未体现中间环节。 3. 缩写拗:“结到环境”在中文里是三个词,音节较多(jié dào huán jìng),且“结”和“境”发音相近(jié-jìng),容易混淆。 下面我们将详细解释这个概念,并说明其重要性: 热阻$\Theta_{\text{JA}}$是一个复合参数,它包含多个子热阻: $$\Theta_{\text{JA}} = \Theta_{\text{JC}} + \Theta_{\text{CS}} + \Theta_{\text{SA}}$$ 其中: - $\Theta_{\text{JC}}$:结到外壳的热阻(由芯片封装材料决定) - $\Theta_{\text{CS}}$:外壳到散热器的热阻(取决于导热硅脂或垫片) - $\Theta_{\text{SA}}$:散热器到环境的热阻(取决于散热器设计和空气流动) 实际应用中,$\Theta_{\text{JA}}$的值通常由制造商在数据手册中提供,但它是基于标准测试环境(如JEDEC指定)得出的,实际系统可能因散热条件不同而有所差异。 为了帮助理解,我们做一个类比: 电流通过电阻会产生电压降:$V = I \cdot R$ 热量通过热阻会产生温度差:$\Delta T = P \cdot \Theta_{\text{JA}}$ 其中$P$是功率(相当于电流$I$),$\Theta_{\text{JA}}$是热阻(相当于电阻$R$),$\Delta T$是温差(相当于电压降$V$)。 举例说明: 假设某芯片功耗$P=1\,\text{W}$,$\Theta_{\text{JA}}=100\,\text{°C/W}$,则结温比环境温度高$\Delta T = 1 \times 100 = 100\,\text{°C}$。 若环境温度为$25\,\text{°C}$,结温将达到$125\,\text{°C}$。 名称的由来: 该术语直译自英文"Junction-to-Ambient Thermal Resistance"。在英文中,该术语已经缩写成$\Theta_{\text{JA}}$,但中文没有通用的简短表达,只能完整翻译为“结到环境热阻”,导致冗长。 改进建议(非正式场合): - 技术文档:使用符号$\Theta_{\text{JA}}$ - 语交流:简称为“结环热阻”(但需预先定义) 最后强调:$\Theta_{\text{JA}}$是散热设计的关键参数,直接影响电子元器件的可靠性和寿命。当结温超过半导体材料的极限(通常$125\,\text{°C}-150\,\text{°C}$)时,器件可能永久损坏[^1]。 </think> ### 解释"结到环境热阻"的概念及术语原因 #### 1. **概念解析** **结到环境热阻**(Junction-to-Ambient Thermal Resistance, $\Theta_{\text{JA}}$)是热力学中的核心参数,定义为: $$\Theta_{\text{JA}} = \frac{T_J - T_A}{P}$$ 其中: - $T_J$:半导体结温(芯片发热核心温度) - $T_A$:环境温度(器件周围空气温度) - $P$:器件功耗 该参数描述**热量从芯片内部结区传递到外部环境的整体阻碍程度**。例如: - 某芯片$\Theta_{\text{JA}} = 100\text{°C/W}$ - 功耗$P=1\text{W}$时,结温比环境温度高$100\text{°C}$ #### 2. **热传递路径解析** 热阻包含多层传递过程: ```mermaid graph LR A[半导体结 T_J] -->|Θ_JC| B[封装外壳] B -->|Θ_CA| C[环境 T_A] ``` 其中: - $\Theta_{\text{JC}}$:结到外壳热阻(由封装材料决定) - $\Theta_{\text{CA}}$:外壳到环境热阻(由散热设计决定) 总热阻为: $$\Theta_{\text{JA}} = \Theta_{\text{JC}} + \Theta_{\text{CA}}$$ #### 3. **术语原因** | 因素 | 具体说明 | |-------------------------|--------------------------------------------------------------------------| | **专业词汇嵌套** | "结"(Junction)和"环境"(Ambient)均为专业术语,组合后理解门槛高 | | **路径指向不直观** | "到"字隐含热量传递方向,但未明示多层传递过程(结→外壳→散热器→环境)[^1] | | **中英文混合障碍** | 直译自英文术语"Junction-to-Ambient",中文缺乏等效简练表达 | | **物理概念抽象** | "热阻"类比电路电阻:$\Theta_{\text{JA}} \approx R_{\text{thermal}}$,但热传导过程不可见 | #### 4. **简化理解方法** 通过电路类比降低理解难度: ```mermaid graph LR 电压差[ΔT = T_J - T_A] --> 电阻[Θ_JA] --> 电流[P] ``` - **温度差** $\Delta T$ 类比 **电压** - **热阻** $\Theta_{\text{JA}}$ 类比 **电阻** - **功耗** $P$ 类比 **电流** > **案例**:CPU散热设计 > $\Theta_{\text{JA}} = 80\text{°C/W}$的处理器,在$P=50\text{W}$功耗、$T_A=25\text{°C}$环境时: > $$T_J = T_A + P \times \Theta_{\text{JA}} = 25 + 50 \times 80 = 4025\text{°C} \quad (\text{需加散热器!})$$ #### 5. **工程实践意义** 该参数直接决定: - **器件选型**:功率器件需满足$T_J < T_{\text{Jmax}}$(最大结温) - **散热设计**:$\Theta_{\text{JA}}$过高时需增加散热片或强制风冷 - **寿命预测**:结温每升高$10\text{°C}$,器件寿命减半(阿伦尼乌斯定律) --- ### 相关问题 1. 如何通过实验测量半导体器件的结到环境热阻$\Theta_{\text{JA}}$? 2. 在PCB散热设计中,降低$\Theta_{\text{CA}}$(外壳到环境热阻)的常用方法有哪些? 3. 多层热阻模型$\Theta_{\text{JA}} = \Theta_{\text{JC}} + \Theta_{\text{CS}} + \Theta_{\text{SA}}$中,$\Theta_{\text{CS}}$的具体物理含义是什么? 4. 为什么说$\Theta_{\text{JA}}$是"系统级参数"而非器件固有属性?[^1] [^1]: 热阻的本质是描述热量传递路径的阻碍能力,这与电路电阻阻碍电流流动的特性高度相似。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangrelay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值