7-3 母牛的故事 (20 分)

该博客提供了一个C语言程序,用于计算在给定年份n时,由一对初始母牛繁殖产生的母牛总数。程序使用了递归的方法,根据每年新增的小母牛来更新总数。当n为2时,总共有2头母牛;当n为5时,总共有6头母牛。这个程序适用于理解递归算法和简单的牛顿繁殖模型。

有一对夫妇买了一头母牛,它从第2年起每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。
请编程实现在第n年的时候,共有多少头母牛?

输入格式:

输入为一个整数n(0< n< 55)

输出格式:

输出在第n年的时候母牛的数量。

输入样例1:

2

输出样例1:

2

 输入样例2:

5

输出样例2:

6
#include<stdio.h>
int born(int n)
{
    int a[55],i;
    a[1]=1;a[2]=2;a[3]=3;a[4]=4;
    for(i=5;i<=n;i++)
    {
        a[i]=a[i-1]+a[i-3];
    }
    return a[n];
}
int main()
{
    int n;
    scanf("%d",&n);
    printf("%d\n",born(n));
    return 0;
}

 

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值