逻辑回归的应用场景:
广告点击率,是否为垃圾邮件,是否患病,金融诈骗,虚假账号--->都是二分类问题
线性回归的输出 就是 逻辑回归的输出
----------------------------------------------------------------------------------------------------------------------
激活函数
sigmoid函数:将线性回归的输出映射到激活函数上,输出结果[0,1]区间中的一个概率值,与阈值进行判断,默认为0.5阈值。
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, roc_auc_score, roc_curve
import matplotlib.pyplot as plt
#1.读取数据
column_name = ['Sample code number', 'Clump Thickness',
'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion',
'Single Epithelial Cell Size',
'Bare Nuclei', 'Bland Chromatin',
'Normal Nucleoli', 'Mitoses', 'Class']
# # 网上直接下载
# path = "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
# data = pd.read_csv(path, names=column_name)
data = pd.read_csv("breast-cancer-wisconsin.data", names=column_name)
#2.缺失值处理
#1)替换np.nan
data = data.replace(to_replace="?",value=np.nan)
#2)删除缺失样本
data.dropna(inplace=True)
data.isnull().any() #不存在缺失值
#筛选特征值和目标值
x = data.iloc[:,1:-1]
y = data["Class"]
# 3.划分数据集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y);
# 4.特征工程
from sklearn.preprocessing import StandardScaler
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
from sklearn.linear_model import LogisticRegression, SGDClassifier
# 5.预估器流程
estimator = LogisticRegression() # 默认参数
estimator.fit(x_train, y_train)
print("逻辑回归_权重系数为: ", estimator.coef_)
print("逻辑回归_偏置为:", estimator.intercept_)
# 6.模型评估
y_predict = estimator.predict(x_test)
print("逻辑回归_预测结果", y_predict)
print("逻辑回归_预测结果对比:", y_test == y_predict)
score = estimator.score(x_test, y_test)
print("准确率为:", score)
# 2是良性的 4是恶性的
Score = classification_report(y_test, y_predict, labels=[2, 4],
target_names=["良性", "恶性"])
print("查看精确率,召回率,F1-score\n", Score)
# 需要转换为0,1表示
y_true = np.where(y_test > 3, 1, 0) # 表示大于3为1,反之为0(class值为2和4)
return_value = roc_auc_score(y_true, y_predict)
print("ROC曲线和AUC返回值为(三角形面积)", return_value)
fpr, tpr, thresholds = roc_curve(y_true, y_predict)
plt.plot(fpr, tpr)
plt.show()
ROC曲线和AUC指标(样本分类不均衡的情况下,可以使用这种方法)
AUC = 0.5 是瞎猜模型
AUC = 1 是最好的模型
AUC < 0.5 属于反向毒奶