OpenCV cv::triangulatePoints()函数使用方法

本文介绍了OpenCV中用于三角化的cv::triangulatePoints()函数,重点讲解了如何在左相机坐标系下进行三角化操作。首先,通过pixel2cam函数将像素坐标转换为归一化相机坐标,接着利用cv::triangulatePoints()实现立体视觉中的三角测量。
部署运行你感兴趣的模型镜像

OpenCV cv::triangulatePoints()函数使用方法

以左相机坐标系三角化

triangulatePoints(T1, T2, left, right, points_final) ;

Mat T1 = (Mat_<float>(3, 4) <<
		1, 0, 0, 0,
		0, 1, 0, 0,
		0, 0, 1, 0);
Mat T2 = (Mat_<float>(3, 4) <<
		R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), T.at<double>(0, 0),
		R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), T.at<double>(1, 0),
		R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), T.at<double>(2, 0)
		);`
其中T2为3x4的[R|T]矩阵,left、right为相机坐标系下的归一化坐标,
因此不能直接使用提取到的像素坐标。应首先将像素坐标通过相机内参转化到相机坐标系下。

在这里插入图片描述
通过函数pixel2cam可将像素坐标转换到归一化相机坐标系下
归一化坐标:X=(u-u0)/fx

//像素坐标到归一化平面相机坐标的转换
Point2f pixel2cam(const Point2f& p, const Mat& K)
{
    return Point2f
    (
        (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
        (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
    );
}

您可能感兴趣的与本文相关的镜像

PyTorch 2.7

PyTorch 2.7

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 5
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值