ZOJ Monthly, March 2013 A题 A Simple Tree Problem(线段树)#zh

这次月赛太无语了。H题看起来是个全场题不知道为什么大家都被卡的蛋疼,于是就去想A题了,开始没什么想法,还以为要开N个线段树,后来WQJ说先序遍历一下就可以转换成1维线段树了,想一下确实是这样。由于不是二叉树,开始建树的时候有点蛋疼,用了数据结构讲过的儿子兄弟表示法(看来严蔚敏那本书还是有点用的)。建树之后遍历出每个节点在线段树中的对应位置和子树中节点的总数。接下来就是更新和查询的线段树操作了,一开始看错题了,还以为是每次操作都把那个子树全变成1,后来发现是反转。结果pushdown写挫了,改半天不知道哪里有问题,看了好甜的代码才改好了,伤不起,今天的状态太差了。晚上的马拉松应该又要跪了……
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define MAXN 100005
int sum[MAXN<<2];
bool lazy[MAXN<<2];
struct Node
{
    int fa,son,bro;
}tree[MAXN];
int cnt,pos[MAXN],son[MAXN];
void pretravel(int k)
{
    pos[k]=cnt++;
    if(tree[k].son)
        pretravel(tree[k].son);
    if(tree[k].bro)
        pretravel(tree[k].bro);
    son[tree[k].fa]+=son[k]+1;
}
void pushdown(int l,int r,int rt)
{
    if(lazy[rt])
    {
        int m=(l+r)>>1;
        lazy[rt<<1]^=1;
        lazy[rt<<1|1]^=1;
        sum[rt<<1]=(m-l+1)-sum[rt<<1];
        sum[rt<<1|1]=(r-m)-sum[rt<<1|1];
        lazy[rt]=0;
    }
}
void pushup(int rt)
{
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void update(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        sum[rt]=r-l+1-sum[rt];
        lazy[rt]^=1;
        return;
    }
    pushdown(l,r,rt);
    int m=(l+r)>>1;
    if(L<=m)
        update(L,R,l,m,rt<<1);
    if(R>m)
        update(L,R,m+1,r,rt<<1|1);
    pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
    int res=0;
    if(L<=l&&r<=R)
    {
        return sum[rt];
    }
    pushdown(l,r,rt);
    int m=(l+r)>>1;
    if(L<=m)
        res+=query(L,R,l,m,rt<<1);
    if(R>m)
        res+=query(L,R,m+1,r,rt<<1|1);
    pushup(rt);
    return res;
}
int main()
{
   // freopen("input.txt","r",stdin);
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(tree,0,sizeof(tree));
        memset(lazy,0,sizeof(lazy));
        memset(sum,0,sizeof(sum));
        memset(pos,0,sizeof(pos));
        memset(son,0,sizeof(son));
        cnt=1;
        int p;
        for(int i=2;i<=n;i++)
        {
            scanf("%d",&p);
            if(tree[p].son==0)
            {
                tree[p].son=i;
                tree[i].fa=p;
            }
            else
            {
                tree[i].bro=tree[tree[p].son].bro;
                tree[tree[p].son].bro=i;
                tree[i].fa=p;
            }
        }
        pretravel(1);
        while(m--)
        {
            char str[5];
            int x;
            scanf("%s%d",str,&x);
            if(str[0]=='o')
            {
                update(pos[x],pos[x]+son[x],1,n,1);
            }
            else
            {
                printf("%d\n",query(pos[x],pos[x]+son[x],1,n,1));
            }
        }
        printf("\n");
    }
}

### ZOJ 1088 线段树思路 #### 目概述 ZOJ 1088 是一道涉及动态维护区间的经典问。通常情况下,这类问可以通过线段树来高效解决。目可能涉及到对数组的区间修改以及单点查询或者区间查询。 --- #### 线段树的核心概念 线段树是一种基于分治思想的数据结构,能够快速处理区间上的各种操作,比如求和、最大值/最小值等。其基本原理如下: - **构建阶段**:通过递归方式将原数组划分为多个小区间,并存储在二叉树形式的节点中。 - **更新阶段**:当某一段区间被修改时,仅需沿着对应路径向下更新部分节点即可完成全局调整。 - **查询阶段**:利用懒惰标记(Lazy Propagation),可以在 $O(\log n)$ 时间复杂度内完成任意范围内的计算。 具体到本,假设我们需要支持以下两种主要功能: 1. 对指定区间 `[L, R]` 执行某种操作(如增加固定数值 `val`); 2. 查询某一位置或特定区间的属性(如总和或其他统计量)。 以下是针对此场景设计的一种通用实现方案: --- #### 实现代码 (Python) ```python class SegmentTree: def __init__(self, size): self.size = size self.tree_sum = [0] * (4 * size) # 存储区间和 self.lazy_add = [0] * (4 * size) # 延迟更新标志 def push_up(self, node): """ 更新父节点 """ self.tree_sum[node] = self.tree_sum[2*node+1] + self.tree_sum[2*node+2] def build_tree(self, node, start, end, array): """ 构建线段树 """ if start == end: # 到达叶节点 self.tree_sum[node] = array[start] return mid = (start + end) // 2 self.build_tree(2*node+1, start, mid, array) self.build_tree(2*node+2, mid+1, end, array) self.push_up(node) def update_range(self, node, start, end, l, r, val): """ 区间更新 [l,r], 加上 val """ if l <= start and end <= r: # 当前区间完全覆盖目标区间 self.tree_sum[node] += (end - start + 1) * val self.lazy_add[node] += val return mid = (start + end) // 2 if self.lazy_add[node]: # 下传延迟标记 self.lazy_add[2*node+1] += self.lazy_add[node] self.lazy_add[2*node+2] += self.lazy_add[node] self.tree_sum[2*node+1] += (mid - start + 1) * self.lazy_add[node] self.tree_sum[2*node+2] += (end - mid) * self.lazy_add[node] self.lazy_add[node] = 0 if l <= mid: self.update_range(2*node+1, start, mid, l, r, val) if r > mid: self.update_range(2*node+2, mid+1, end, l, r, val) self.push_up(node) def query_sum(self, node, start, end, l, r): """ 查询区间[l,r]的和 """ if l <= start and end <= r: # 完全匹配 return self.tree_sum[node] mid = (start + end) // 2 res = 0 if self.lazy_add[node]: self.lazy_add[2*node+1] += self.lazy_add[node] self.lazy_add[2*node+2] += self.lazy_add[node] self.tree_sum[2*node+1] += (mid - start + 1) * self.lazy_add[node] self.tree_sum[2*node+2] += (end - mid) * self.lazy_add[node] self.lazy_add[node] = 0 if l <= mid: res += self.query_sum(2*node+1, start, mid, l, r) if r > mid: res += self.query_sum(2*node+2, mid+1, end, l, r) return res def solve(): import sys input = sys.stdin.read data = input().split() N, Q = int(data[0]), int(data[1]) # 数组大小 和 操作数量 A = list(map(int, data[2:N+2])) # 初始化数组 st = SegmentTree(N) st.build_tree(0, 0, N-1, A) idx = N + 2 results = [] for _ in range(Q): op_type = data[idx]; idx += 1 L, R = map(int, data[idx:idx+2]); idx += 2 if op_type == 'Q': # 查询[L,R]的和 result = st.query_sum(0, 0, N-1, L-1, R-1) results.append(result) elif op_type == 'U': # 修改[L,R]+X X = int(data[idx]); idx += 1 st.update_range(0, 0, N-1, L-1, R-1, X) print("\n".join(map(str, results))) solve() ``` --- #### 关键点解析 1. **初始化与构建**:在线段树创建过程中,需要遍历输入数据并将其映射至对应的叶子节点[^1]。 2. **延迟传播机制**:为了优化性能,在执行批量更新时不立即作用于所有受影响区域,而是记录更改意图并通过后续访问逐步生效[^2]。 3. **时间复杂度分析**:由于每层最多只访问两个子树分支,因此无论是更新还是查询都维持在 $O(\log n)$ 范围内[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值