chatGPT 刚出来没多久的时候,openai 时不时的限制使用频率,当时我想要是能本地部署一个大模型,无限制的使用该多好哇。后来有很多团队/公司陆陆续续在 github 开源了他们自己训练的大模型,但是部署使用的操作门槛比较高,曾经试图部署过一个,报了几个错也没时间折腾就放弃了
前几天我发现了一个叫 ollama 的项目,根据介绍,一条命令就能跑起来一个大模型,因此实际体验了一下,项目地址:
https://github.com/ollama/ollama
先说一下使用体验,极其丝滑,完全没有报错,感觉就像是刚开始学 web 安全,需要自己搭漏洞复现环境的我,遇到了 vulhub 这个项目哈哈哈哈
接下来是部署指南:
首先去 github 的 release 页面下载一个编译好的程序并安装
https://github.com/ollama/ollama/releases
安装好之后直接在命令行执行ollama run llama2
就会自动去下载并运行 llama2 这个模型,下载甚至不需要挂代理,很舒适:
等模型下载结束后会自动进入命令行的交互模式,此时就已经部署结束了
可以在:https://ollama.com/library 找到更多的模型
但是在命令行中直接交互里很多格式解析不出来,看起来怪怪的,可以使用 chatbot-ollama 这个项目部署一个 webUI,这样就可以在聊天框里面调用模型对话了,项目地址:
https://github.com/ivanfioravanti/chatbot-ollama
这个项目部署起来也很简单,只要电脑上装有 npm(直接安装 nodejs,会附带安装 npm),然后下载 chatbot-ollama 项目到本地,在文件夹中依次执行这两条命令即可:
代码语言:javascript
复制
npm ci
npm run dev
此时会自动打开一个 127.0.0.1:3000 的网页,然后愉快的使用吧!
此外,你还可以配合翻译插件进行本地AI翻译,openai-translator 这个项目原本是使用在线模型的 API 进行翻译的,但目前也支持了 ollama,项目地址:
https://github.com/openai-translator/openai-translator
直接去 release 下载安装包后运行,在设置中选择本地大模型,并选择 API 模型为你已经下载好的本地模型保存即可
使用效果:
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓